Objectives and Activities of the Technical Committee
“Landfill Technology”

Hans-Günter Ramke, Höxter

Introduction to the Workshops

Design and Construction of Bottom Liner and Leachate Collection Systems –
Appropriate Solutions for Developing Countries

Landfill Restoration, Capping and Monitoring –
Useful Experience for Developing Countries

organized by of the Technical Committee Landfill Technology
of the German Geotechnical Society (DGGT)

in the Frame of

Sardinia 2009: Twelfth International Waste Management
and Landfill Symposium

organized by IWWG, International Waste Working Group

Symposium in S. Margherita di Pula – Cagliari, Sardinia, Italy
05-09 October 2009

Address of the Author

Professor Dr.-Ing. Hans-Günter Ramke
University of Applied Sciences Ostwestfalen-Lippe, Campus Hoexter
An der Wilhelmshöhe 44, D-37671 Hoexter
Phone ++49/5271/687-130, e-mail hans-guenter.ramke@hs-owl.de
This presentation can be cited as follows:

RAMKE, H.-G., 2009: Objectives and Activities of the Technical Committee “Landfill Technology”
Introduction to Workshops on Landfill Technology in Developing Countries organized by of the Technical Committee Landfill Technology of the DGGT at Sardinia 2009: Twelfth International Waste Management and Landfill Symposium Symposium in S. Margherita di Pula – Cagliari, Sardinia, Italy, 5-9 October 2009
Objectives and Activities of the Technical Committee “Landfill Technology”

Professor Dr.-Ing. Hans-Günter Ramke
University of Applied Sciences Ostwestfalen-Lippe, Campus Hoexter
Professorship of Waste Management and Sanitary Landfilling

Technical Committee Landfill Technology Overview

- Introduction
- Problems of Present Practice
- Objectives and Scope
- Members of the Technical Committee
- Contents and Approaches
- Invitation for Participation
Introduction
Present Situation - Part 1

- Waste Management in Theory
 - source reduction
 - reuse and recycling
 - pre-treatment before disposal

- Waste Management in Practice
 - get the waste off the streets
 - dispose of the waste as good as possible ("landfilling")
 - develop an integrated waste management (perhaps)

Introduction
Present Situation - Part 2

- Future Developments
 - growing population
 - increasing living standards
 - growth of waste quantity
 - growth of waste toxicity

- Problems of Waste Disposal
 - hundreds of thousand of dangerous dumps
 - landfilling is mid-term the most important practice
 - in future more than 10,000 landfills all over the world
Introduction
Present Situation - Part 3

- Consequences for Landfill Technology
 - landfill technology becomes globally important just now
 - landfill technology with local resources

- Contribution of Germany
 - comprehensive theoretical and practical experience
 - willingness of international know-how-transfer

Introduction
Technical Committee Landfill Technology

- Objectives of the Technical Committee
 - preparation of a „Toolkit Landfill Technology“ for experts in Developing and Newly Industrialised Countries
 - publication via the internet in English language

- Participating Technical Committees
 - „Committee on Geotechnics of Landfill Engineering“
 German Geotechnical Society - DGGT
 - “Committee Sanitary Landfills”
 German Association for Water, Wastewater and Waste - DWA
 Association of Municipal Waste Management & City Cleaning - VKS
Problems of Present Practice
Insufficient Landfill Practice - Part 1

- Typical Problems
 - life threats for „waste pickers“ and their families
 - health risks for people in the neighbourhood
 - air pollution caused by burning waste
 - greenhouse effects of landfill gas
 - soil contamination
 - pollution of surfacewater and groundwater
 - rapid reproduction and spreading of vermin

Problems of Present Practice
Insufficient Landfill Practice - Part 2

Landfill in Latin America - waste pickers on a landfill

Photo: P. Schnittger, Hamburg, Germany
Problems of Present Practice
Insufficient Landfill Practice - Part 3

Landfill near Bandung, Indonesia, - Extensive landslide

Photo: F. Költsch, Braunschweig, Germany

Problems of Present Practice
Insufficient Landfill Practice - Part 4

Landfill in the Middle East - Operation with high tipping edge
Problems of Present Practice
Insufficient Landfill Practice - Part 5

Landfill in the Middle East
- Burning waste at landfill bottom

Problems of Present Practice
Insufficient Landfill Practice - Part 6

Landfill in the Maghreb
- Large urban landfill
Problems of Present Practice
Insufficient Landfill Practice - Part 7

Landfill in Latin America
- Pollution of Surface and Groundwater

Problems of Present Practice
Insufficient Landfill Practice - Part 8

Landfill in the Middle East
- Leachate Pond at Landfill Bottom
Problems of Present Practice
Insufficient Landfill Practice - Part 9

Landfill in the Maghreb
- Untrapped Leachate discharge at landfill slope

Problems of Present Practice
Insufficient Landfill Practice - Part 10

Landfill in the Maghreb
- Leachate discharge in open trenches
Problems of Present Practice
Insufficient Landfill Practice - Part 11

Landfill in the Maghreb - Leachate discharge into a river

Problems of Present Practice
Insufficient Landfill Practice - Part 12

Dump in Latin America - Flock of birds

Photo: P. Schnittger, Hamburg, Germany
Problems of Present Practice
Reasons for Insufficient Practices of Landfilling

- Socio-Economical Conditions
 - poor public awareness
 - limited financial resources
 - no availability of construction materials and products

- Knowledge-based Reasons
 - no legal requirements
 - lack of local knowledge and experience

Problems of Present Practice
Missing Technical Guidelines and Recommendations

- International Guidelines
 - existing in industrialised countries
 - not always applicable in Developing Countries

- International Technical Literature
 - for experts in Industrialised Countries on a high level
 - for decision makers in Developing Countries
 - for beginners as an introduction in landfill technology
 → no technical handbooks for skilled engineers in DCs
Objectives and Scope
Objectives of the Toolkit - Part 1

- Basic Idea
 - transfer of engineering know-how
 - for preparation of local solutions

- Considerations for Appropriate Solutions
 - hydrological and climatic conditions
 - ecological requirements and effectiveness
 - economic resources
 - availability of construction material and technology
 - regional experience in construction

Objectives and Scope
Objectives of the Toolkit - Part 1

- Content of the Toolkits
 - landfill design
 - landfill construction
 - landfill operation
 - landfill monitoring

- Parts of the Toolkits
 - Fundamentals
 - Regional Experience
 - Collection of Examples
Objectives and Scope
Objectives of the Toolkit - Part 2

- Users of Toolkit
 - landfill designers
 - manager of landfill operators
 - engineers in construction companies
 - employees in public authorities

- Method of Publication
 - toolkit at the level of GDA-Recommendations
 - publication at an own website
 - publication in English

Objectives and Scope
Scope of the Toolkit - Part 1

- Part I: Fundamentals
 - comprehensive overview of landfill technology
 - prepared by members of the Technical Committee

- Part II: Regional Experience
 - regional practice, standards, pilot projects
 - prepared by international co-operation partners
Objectives and Scope
Scope of the Toolkit - Part 2

- Part III: Examples
 - presentation of case studies and constructional solutions
 - cost effective and sustainable
 - compiled by interested professionals

- Tools
 - bibliography
 - design tools for calculation (EXCEL)
 - internet links
Members of the Technical Committee
Part 1

- Members (June 2009)
 - consulting companies 6
 - landfill operators 3
 - public authorities 3
 - institutions of international co-operation 2
 - universities and scientific institutions 6
 total 20

Members of the Technical Committee
Part 2

- International Partners (June 2009)
 - Europe Poland, Romania, Hungary
 - Asia China, India, Indonesia, Pakistan
 - Africa Morocco, Tunisia
 - Middle East Jordan, Iran, Syria, Turkey
 - South America Brazil
Contents and Approaches
Principles of Sanitary Landfilling - Overview

- Introduction
- Municipal Waste Management
- Health and Environmental Risks of Dumps & Landfills
- Concepts of Landfilling
- Economic Aspects
- Legal Framework and Standards
- Principles of Landfill Design
- Principles of Quality Management

Contents and Approaches
Development of Standards - Part 1

- Criteria for Suitable Standards
 - ecological effectiveness
 - economical resources
 - regional experience in construction
 - availability of construction materials
 - hydrological and climatic conditions
Contents and Approaches
Development of Standards - Part 2

- Typical Mistakes in Development of Standards
 - requirements economically not realisable
 - requirements technically not realisable
 - requirements organisationally not realisable

- Necessary Regional Differentiation
 - hydrological and climatic conditions
 - conditions of waste management
 - economical conditions

Contents and Approaches
Development of Standards - Part 3

Map of Morocco
- Marking of different regions

Quelle: Spiegel Online, Länderlexikon, 27.02.07
Contents and Approaches
Site Selection and Bottom Lining - Overview

- Site Selection
- Principles of Bottom Lining
- Mineral Liners
- Geosynthetic Barriers
- Asphalt Liners
- Construction of Liner Systems
- Site Infrastructure
- Site Development

Contents and Approaches
Bottom Liner Systems - Technical Assessment

<table>
<thead>
<tr>
<th>Alternative Criteria</th>
<th>Hydraulic Permeability</th>
<th>Long-Term Behavior</th>
<th>Complexity of Construction</th>
<th>Availability of Raw Material</th>
<th>Local Experience in Construction</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved Profiling of Subsoil</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Adapted Mineral Liner System</td>
<td>0/0</td>
<td>0</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Mineral Liner System</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geomembrane Liner System (HDPE)</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Geo-synthetic Clay Liner</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Asphalt Liner System</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Contents and Approaches
Bottom Liner Systems – Quality Assurance

- Necessity for Quality Assurance
 - to check the fulfilment of all requirements
 - e.g. mineral liners: permeability, density
 - e.g. geomembranes: installation without damages

- Type and Quantity of Tests
 - depending on the type of liner which is chosen

Contents and Approaches
Collection and Treatment of Emissions - Overview

- Degradation Processes in Landfills
- Leachate Quantity and Quality
 - Leachate Collection
 - Leachate Management
- Landfill Gas Quantity and Quality
 - Gas Collection
 - Gas Treatment
Contents and Approaches
Leachate Collection Systems - Part 1

- Standard Leachate Collection System
 - 30 cm drainage layer
 - coarse drainage material, 16 – 32 mm gravel

- Particular Problems in Developing Countries
 - drainage material very often not available
 - alternative: secondary drains made of very coarse stones

Contents and Approaches
Leachate Collection Systems - Part 2

- Necessity
 - coarse drainage material not available
 - improvement of efficiency and life span of leachate collection system by secondary drains made of coarse stone

- Parameters
 - secondary stone drains of very coarse material (32 – 150 mm)
 - dams with a width 2.5 m, height > 1 m, k > 1·10⁻² m/s
 - angle to the pipes according the slope line
Contents and Approaches
Leachate Collection Systems - Part 1

Leachate collection system with secondary drains

Contents and Approaches
Leachate Collection Systems - Part 4

Leachate collection system with secondary drains - Landfill of Hannover (overview)
Contents and Approaches
Leachate Collection Systems - Part 5

Leachate collection system with secondary drains - Landfill of Hannover (details)

Contents and Approaches
Leachate Treatment - Leachate Generation

- General Experience
 - even in arid or semi-arid climates leachate generation
 - only little leachate generation caused by precipitation
 - but comparative much "primary leachate generation (wet waste)"
 - high organic load of leachate
 - fast development of landfill height
 - high content of organics

- Consequences
 - leachate recirculation is no solution
 - accumulation of leachate must be avoided
- Methods of Leachate Management
 - recirculation
 (low leachate quantity and dry waste)
 - evaporation
 (only under arid climates, pre-treatment useful)
 - vaporisation
 (in case of no surface water in the neighbourhood)
 - off-site treatment
 (together with municipal sewage, pre-treatment useful)
 - on-site treatment
 (2 - 3 treatment stages necessary for high discharge quality)

- Simple Solution of Leachate Treatment
 - aerated lagooning
 - at the lower end of the landfill
 - three ponds with a sealed bottom
 - first pond: settling pond
 - second pond: pond with artificial aeration (if possible)
 - third pond: final settling pond with natural aeration
 - partial leachate pre-treatment
 - reduction of organic constituents

(Source: Oeltzschner, 1996)
Contents and Approaches
Leachate Treatment - Recommendations (2)

- Leachate Management in Arid Climates
 - leachate recirculation is not successful when organic content and moisture of waste are high
 - evaporation should be used for leachate removal as far as possible where it is possible
 - pre-treatment seems necessary to avoid handling and odour problems
 - anaerobic ponds are useful in summer (temperature > 15 °C)
 - in addition and as basic treatment option aerated lagoons are to be installed (floating aerators)

(Source: Ramke, 2005)

Contents and Approaches
Leachate Treatment - Recommendations (3)

Scheme for leachate management in arid climates

(Source: Ramke, 2005)
Contents and Approaches
Leachate Storage – Part 1

- General Recommendations
 - If there is a leakage in the leachate storage the whole lining system of the landfill is vain!
 - The lining system for the landfill is very expensive and the leachate storage pond or basin is comparably cheap.
 - Please, take special care about the liner of the leachate pond/basin.

Contents and Approaches
Leachate Storage – Part 2

- Dimensioning of Leachate Storage Basin/Ponds
 - The minimum requirements of Germany might be helpful.
 - $V \geq 20 \cdot Q_{\text{average,d}}$ (capacity to store the average leachate quantity of 20 days)
 - $V \geq 5 \cdot Q_{\text{max,d}}$ (capacity to store the maximum daily leachate quantity for days off)
 - The bigger volume is to be chosen.
Contents and Approaches
Landfill Operation - Overview

- Organisation of Landfill Operation
- Pre-Treatment of Waste
- Waste Placement and Compaction
- Settlements of Landfill Body
- Landfill Stability
- Monitoring
- Improvement of Existing Sites
- Complex of Problems of Waste Pickers

Contents and Approaches
Pre-Treatment of Waste - Introduction

- Objectives of Pre-Treatment
 - reduction of waste quantity
 (and improving of waste quality)
 - prolongation of landfill life-span
 (less waste volume, increasing of compaction density)
 - decreasing of emissions of landfills
 (less leachate and landfill gas emissions)

- Technical Possibilities
 - waste incineration (WI)
 - mechanical-biological waste pre-treatment (MBW-T)
Contents and Approaches
Pre-Treatment of Waste - Requirements of the EU

- Requirements for Landfill Classes II
 - acceptance criteria for “non-municipal” waste
 - reduction of the content of organics of MSW before disposal
 - allowed amount related to the amount in 1995

- Required Reduction of Organics in MSW
 - until 2006: 75 %
 - until 2009: 50 %
 - until 2016: 35 %

Contents and Approaches
Pre-Treatment of Waste - MBW-Advantages (1)

- Effects of Mechanical-Biological Pre-Treatment
 - significantly reduction of the biodegradable content of the waste
 - decisive diminishing of the biological decomposition processes taking place in a landfill
 - decreasing of moisture content and the mean particle size, the treated material becomes considerably more homogeneous
Contents and Approaches
Pre-Treatment of Waste - MBW-Advantages (2)

- Results of Mechanical-Biological Pre-Treatment
 - higher compaction density at same compaction energy
 - reduction of the waste quantity to be disposed of
 - extension of the life-span of the landfill
 - significant lower concentration of organics in the leachate
 - significant reduction of landfill gas generation

Contents and Approaches
Pre-Treatment of Waste - Rottening Windrows (1)

Schematic cross section of a passively aerated rottening heap
(Source: GTZ, 2000)
Contents and Approaches
Pre-Treatment of Waste - Rottening Windrows (2)

- Handling of Rottening Windrows (1)
 - rottening windrows are very suitable for an on-site pre-treatment of waste
 - the height of windrows is ~ 2m, the width 30 - 60 m
 - the space of the ventilation pipes is ~ 2 - 3 m
 - the windrows are covered with sieved composted waste

Contents and Approaches
Pre-Treatment of Waste - Rottening Windrows (3)

- Handling of Rottening Windrows (2)
 - during the rotting process the windrow must not become dry
 - in arid areas or during dry summer periods irrigation is recommended, for this purpose sewage and leachate can be used
 - in humid climates protection against rainfall might be useful
 - after 6 - 9 month of “composting” the windrow is spread into 20 cm high layers and has to be well compacted
 - details of the rottening process depend on the waste properties, the local situation, and the climatic conditions
Contents and Approaches
Pre-Treatment of Waste - Rottening Windrows (4)

Landfill in Iran –
Front of some
Rottening
Windrows

Contents and Approaches
Pre-Treatment of Waste - Rottening Windrows (5)

Landfill in Iran –
Lateral Surface
of a Rottening
Windrow
Contents and Approaches
Landfill Closure and Restoration - Overview

- Landfill Capping
- Water Balance of Capping Systems
- Soil Cover and Vegetation
- Drainage of Landfill Capping Systems
- Barrier and Liner Systems
- Rehabilitation of Existing Sites
- Rehabilitation of Sludge Deposits

Contents and Approaches
Landfill Capping - Overview

- Tasks of a Surface Cover System
 - isolation of the wastes from environment at the surface
 - provision of long-term minimisation of leachate production
 - control of venting of landfill gas

- Components of a Surface Cover System
 - bearing layer and/or gas drainage layer
 - sealing layer (mineral liner and/or geomembrane)
 - drainage layer
 - top soil cover (vegetation layer) and vegetation
Contents and Approaches
Landfill Capping - Local Characteristics

- Criteria for System Selection
 - risk potential of the landfill
 - availability of liner and drainage soils
 - local experience in construction

- Important Local Characteristics
 - general climatic conditions - arid or humid
 - distribution of precipitation - dry weather periods
 - risk of surface runoff, local vegetation

Contents and Approaches
Landfill Capping - Questions

- What cover design is used in your country and why?
 (restrictions or potential due to climate, material availability, law, costs)

- What long-term experience exist with these covers?

- Are there measurement results?
 (e.g. from digging, lysimeters)
Contents and Approaches
Landfill Capping - Alternatives

Surface Cover and Liner Systems (Cross Section)

Contents and Approaches
Water Balances - Questions

- Are water balance calculations performed?
- What models are used?
- What experience exist in model application?
 (applicability, data availability, cvalidity of results, comparison of models)
- Should precipitation data be corrected?
 (systematic measurement errors)
- How is climate change to be considered?
Contents and Approaches
Soil Cover and Vegetation - Part 1

- Problems in Arid Areas
 - partly long drought
 - periodically short heavy rainfalls
 - erosion sensitive soils

- potential solutions
 - selection of autochthon vegetation
 - short lengths of slopes
 - simple fixing of slope surfaces

Contents and Approaches
Soil Cover and Vegetation - Part 2

Erosion Channels at a Landfill Site in the Middle East
Local Vegetation at an Arid Landfill Site

Different Stages of Restoration of a Landfill in Germany
Contents and Approaches

Landfill Aftercare - Overview

- Long-term Behaviour of Landfills
- Operational Tasks of Aftercare
- Long-term Monitoring

Economic Calculations and Finance - Overview

- Investment and Operation Costs
- Calculation of Dynamic Unit Costs
- Finance of Investments
- Carbon Trade
Invitation for Participation
Part 1

- Invited Experts
 - all landfill professionals (designers, operators, scientists)
 - in particular from developing countries
 and newly industrialised countries

- Topics of Contributions
 - data of landfill behaviour (leachate, gas, barrier systems)
 - design of treatment plants and barrier systems
 - cost effective treatment of leachate and landfill gas
 - landfill operation under different climatic conditions

Invitation for Participation
Part 2

- International Workshop in Germany
 - presentation of the toolkit – part fundamentals
 - exchange of experience with international partners

- International Conference in Southern Europe
 - international announcement of the results

- Internet-Addresses and Contact
 - www.landfill-technology.de
 - hans-guenter.ramke@hs-owl.de
Addresses

Professor Dr.-Ing. Hans-Günter Ramke
Chairman of the Technical Committee Landfill Technology
University of Applied Sciences Ostwestfalen-Lippe
Campus Hoexter
Department of Environmental Engineering and Applied Informatics
Professorship of Waste Management and Sanitary Landfilling
An der Wilhelmshoehe 44, 37671 Hoexter, Germany
Phone: ++49/5271/687-130; Fax: ++49/5271/687-130
E-mail: hans-guenther.ramke@hs-owl.de