
Enhancing GPU Rendering
Efficiency through Scene
Optimizations: A Case Study
using Octane for Cinema 4D

Bachelor Thesis
Lucas de Melo Bernardino
Submitted to the Department of Media Production
University of Applied Sciences Ostwestfalen-Lippe, 32756 Detmold
January, 2024

1. Examiner: Rico Dober
2. Examiner: Jennifer Meier

License
CC BY 4.0, ODC-BY 1.0

Layout by:
Sergej Gavrilov

Proofread:
Katharina Cardoso Diefenbach
Kliment Gavrilov
Sergej Gavrilov

Thanks to:
Bruno Flávio Carneiro Malaco & Safari Post-
Production for funding the assets used on
this paper.

Abstract
This thesis examines the impacts of scene and rendering optimizations techniques aimed for GPU rendering within
the realm of animated scene for offline rendering. Focusing on the unique challenges posed by dynamic animations,
the research explores how these rendering approaches impact rendering speed, memory efficiency, and the attainment
of lifelike visual quality. Using Octane render as ground for analysis, this study aims to uncover how scene optimi-
zations intersect with the demands of animated content. Through meticulous comparison, this thesis endeavours to
provide insights that empower rendering practitioners and animators to go through optimization strategies, bridging
the gap between efficient resource allocation and the pursuit of captivating visual.

	 Keywords: GPU Rendering, Scene Optimization, 3D Rendering, Cinema 4D, Octane Render

Table of Contents

1.	 Introduction ��� 8
2.	 Literature Review �� 9
3.	 Methodology ��� 10
4.	 Results ��� 11

4.1	 Research Objectives ��� 11
4.2	 Relation of GPU Renderers to Time Sensitive Productions ������������������������������� 11

4.2.1	 Impact on Artists Workflow �� 11
4.2.2	 Impact of Faster Interactive Preview ��� 12

4.3	 Scope and Limitation�� 13
4.4	 Aiming for the Hardware �� 13

4.4.1	 Hardware Limitations ��� 13
4.4.2	 Hardware Strengths ��� 14

4.5	 Accepting the Pain: Dealing with Hardware Limitations������������������������������������ 15
4.5.1	 Level of Detail ��� 15
4.5.2	 Culling Techniques ��� 15
4.5.3	 Baking Lights into HDRI �� 15
4.5.4	 Instances and Batch ��� 15
4.5.5	 Geometry Simplifications ��� 15
4.5.6	 Texture Atlasing �� 15
4.5.7	 Texture Resolution ��� 16
4.5.8	 Procedural Textures �� 16
4.5.9	 UV vs. Triplanar Texturing ��� 16
4.5.10	Caching ��� 16

4.6	 Optimizing the 3D Scene: Collecting Data through Experimentation ��������������� 16
4.6.1	 Gathering Render Information ��� 16

4.6.1.1	 C4D Console �� 16
4.6.1.2	 Octane Device Setting�� 16
4.6.1.3	 Hardware Monitoring: MSI Afterburner�� 16
4.6.1.4	 C4D Render Log: �� 17

4.6.2	 Frustum Culling for Octane Scatter �� 18
4.6.2.1	 Building the Frustum Culling Area ��� 18
4.6.2.2	 Troubleshooting ��� 20
4.6.2.3	 Bringing the Frustum to Life �� 21
4.6.2.4	 Method one: Frustum Culling the Vertex Map��� 21
4.6.2.5	 Method two: Frustum Culling with Plain Effectors��� 23
4.6.2.6	 What are the Possible Problems when Frustum Culling? �������������������������������� 24
4.6.2.7	 Frustum Culling: Performance Analysis �� 25

4.6.2.8	 Comparing Performance and Visual Outcomes of Both Methods ������������������� 28
4.6.3	 Bulk Resizing Textures ��� 29

4.6.3.1	 Setting Up Presets on Adobe Bridge�� 29
4.6.3.2	 Changing Multiple Textures at Once with Octane Texture Manager���������������� 30
4.6.3.3	 Analyzing the Results ��� 31

4.6.4	 Model Optimization: Volume Builder / VDB Geometries ��������������������������� 32
4.6.4.1	 Optimizing Static Geometries �� 33
4.6.4.2	 Special Situations – High Detailed Geometry ��� 34
4.6.4.3	 Compairing the Final Scene��� 35
4.6.4.4	 Final Considerations �� 35

4.6.5	 Instance vs. Multi-Instance ��� 36
4.6.5.1	 What are Instances?�� 36
4.6.5.2	 Performance Test with Instance Modes ��� 38
4.6.5.3	 Adapted Scene for Analysis: �� 39

4.7	 Aiming for Speed: Engine Settings��� 40
4.7.1	 Adaptive Sampling ��� 40
4.7.2	 Parallel Samples �� 42

5.	 Discussion ��� 43
6.	 Conclusion ��� 45
7.	 Asset List �� 46
8.	 References ��� 47
9.	 Appendix A. Render Logs ��� 48

List of Tables

Table 1.	 Performance analysis of frustum culling system in small scale scene����������������������26
Table 2.	 Performance analysis of frustum culling system in large scale scene����������������������27
Table 3.	 Performance analysis of both developed frustum culling methods��������������������������28
Table 4.	 Performance analysis of the optimizations on a volume builder geometry �������������33
Table 5.	 Performance analysis of the optimizations on a high detailed VDB geometry��������34
Table 6.	 Graphic camparison of both optimized and non-optimized scenes��������������������������35
Table 7.	 Graphical comparison of different instance modes in a complex scene. �����������������38
Table 8.	 Graphical comparison of scene using different instance modes�������������������������������39
Table 9.	 Graphical comparison of render time with different setting for min. samples (adap-

tive sampling) ���41
Table 10.	 Graphical comparison of rendering performance with different setting of parallel

samples��42

List of Figures

Figure 1.	 C4D Console view�� 16
Figure 2.	 Octane Device Setting �� 16
Figure 3.	 Hardware Monitoring in MSI Afterburner�� 16
Figure 4.	 Frustum Culling Octane Scatter ��� 18
Figure 5.	 First concept - Preview culling through Vertex Map ��� 18
Figure 6.	 Xpresso graph - Frustum culling basic setup ��� 19
Figure 7.	 Previewing influence of pivot position on effectors��� 20
Figure 8.	 Representation of the final positioning of the fields��� 20
Figure 9.	 Final Xpresso graph - Frustum culling setup ��� 20
Figure 10.	 Setting up and blending the planar fields ��� 21
Figure 11.	 Preview culled vertex map - Blended planar fields�� 21
Figure 12.	 Applying vertex map��� 21
Figure 13.	 Final result - Frustum culling the vertex map �� 22
Figure 14.	 Invert modifier applied on top of the planar fields�� 23
Figure 15.	 Preparing the culling using plain effector �� 23
Figure 16.	 Example of shadow failures when culling geometries. On the left, all scattered ob-

jects are visible and on the right the scatter systems are being culled���������������������� 24
Figure 17.	 Visualizing the culling through a reflective sphere �� 25
Figure 18.	 Small-scale scene with a reflex ball to preview the scatter systems being culled���� 25
Figure 19.	 Large scale scene with scattering systems�� 27
Figure 20.	 Comparing both culling methods - Culling the vertex map and culling with plain

effector�� 28
Figure 21.	 Export presets in Adobe Bridge�� 29
Figure 22.	 Finding the image textures in Octane Texture Manager��� 30
Figure 23.	 Replace function in Octane Texture Manager �� 30
Figure 24.	 Comparing texture resolution��� 31
Figure 25.	 Memory consumption with 2K and 1K textures��� 31
Figure 26.	 Frustum Culling Octane Scatter ��� 32
Figure 27.	 VDB Mesh: Reference for calculations�� 33
Figure 28.	 VDB Mesh - Original (Dense Mesh) ��� 33
Figure 29.	 VDB Mesh - Adaptive mesh active�� 33
Figure 30.	 VDB Mesh - Remeshed geometry�� 33
Figure 31.	 VDB fluid geometry - Original (Dense Geometry)�� 34
Figure 32.	 VDB fluid geometry - Adaptive mesh active ��� 34
Figure 33.	 VDB fluid geometry - Remesh�� 34
Figure 34.	 On the left, the optimized scene and the right, the scene with the original VDB geo-

metries �� 35

Figure 35.	 (Benson, S. (2023). Memory usage and limitations of instances [image]. OTOY.
https://help.otoy.com/hc/en-us/articles/13900681276571-Resource-Management-In-
stances)�� 36

Figure 36.	 (Benson, S. (2023). Memory usage and limitations of multi-instancing [image].
OTOY. https://help.otoy.com/hc/en-us/articles/13900681276571-Resource-Manage-
ment-Instances) �� 36

Figure 37.	 Main cube��� 37
Figure 38.	 Remove nested multi-instances �� 37
Figure 39.	 Nested multi-instances�� 37
Figure 40.	 Analysed scene to compare performance of instance modes ����������������������������������� 38
Figure 41.	 Crash report - system out of memory��� 38
Figure 42.	 Cloner in instance-mode��� 39
Figure 43.	 Instancing - Reference for calculations �� 39
Figure 44.	 Cloner in multi-instance mode�� 39
Figure 45.	 Result comparison between different min. sample amount ������������������������������������� 40
Figure 46.	 Analysed scene to compare the performance with different setting of parallel sam-

ples�� 42

The realm of computer-generated imagery (CGI) is
characterized by an unrelenting pursuit of realism and
visual fidelity, with artists and content creators continu-
ously pushing the boundaries of what is achievable in
the digital domain. While the limits of creative potential
continue to expand, there is a simultaneous contraction
in production timelines. Due to those dynamics, GPU
rendering (the process of rendering with graphic cards)
has emerged as an efficient and cost-effective approach
to achieving high-quality visuals in real-time and offline
scenarios, speeding up the rendering process and, in
return, providing the artists with more time to work on
the project.

With the advent of powerful Graphics Processing Units
(GPUs) and sophisticated rendering engines, artists
and designers have been empowered with remarkable
rendering speed and stunning visual quality through
GPU renderers. One such rendering engine, Octane
for Cinema 4D, stands out as a pioneering tool in this
domain, offering real-time, physically-based rendering
that has reshaped the landscape of 3D animation and
visualization.

However, GPU rendering comes with its limitations:
in the rendering process, GPUs are constrained by the
available graphic memory, the VRAM (Video Random
Access Memory), and everything that is to be rendered
in a scene is solely loaded on the graphic card. Thus,

Enhancing GPU Rendering
Efficiency through Scene
Optimizations: A Case Study
using Octane for Cinema 4D

1.	 Introduction

efficient utilization of GPU resources has become of
paramount concern.

The fundamental challenge in GPU rendering lies in the
computational intensity required to simulate and render
complex scenes, which often involve highly detailed 3D
models, realistic materials consisting of high-resolution
textures and complex shaders, multiple light sources,
volumetrics, and animations, pushing hardware to its
limits. To address this challenge, scene optimizations are
a crucial aspect of the rendering pipeline and encompass
a wide array of techniques aimed at smoothing the rende-
ring process, reducing computational usage, improving
overall efficiency when GPU rendering, and taking
advantage of the speed offered by this technique.

This thesis embarks on a comprehensive exploration of
the practical analysis of scene optimizations for offline
rendering scenarios, presenting their profound im-
pacts on GPU rendering while using the render engine
OctaneRender® for Cinema 4D (C4D) as reference
point. Octane‘s reputation as a high-performance offline
renderer, combined with its integration into the Cinema
4D software suite, positions it as an ideal candidate for
this study.

In the following chapters, information on the latest
advancements in scene optimization techniques is provi-
ded, delving into the technical intricacies of offline GPU

8

Despite all the advantages of GPU rendering, knowing
how to handle its limitations is of the utmost importance
and learning how to take advantage of the available hard-
ware is crucial. Regardless of the abundance of videos
on rendering optimizations, there is a shortage of content
on practical scene analyses comparing the resource
usage of specific techniques used in 3D scenes. Howe-
ver, in a time of fast development of GPU technology,
GPU rendering is becoming increasingly common in the
market and it is important for artists to have such content
available.

Scott Benson (2023), a C4D artist, has been developing
highly explanatory guides for Octane C4D, sharing them
on his Behance page. The ongoing series Resource Ma-
nagement presents detailed information about how Octa-
ne for C4D works when rendering a scene; furthermore,
it explains which resources are tracked and how this
process must be done to acquire an accurate result. This
series is being featured as an official guide on OTOY‘s
website, the developers of OctaneRender.

The goal of this series is to explore what C4D
and Octane are doing under the hood, and how to
tune our system resources and habits to make our
workflow as zen and frustration-free as possible.
(Benson, 2023, part 1)

Of equal importance, the Raphael Rau (aka Silverwing)
Youtube channel also provides much information on
rendering techniques and best practices when working

2.	 Literature Review

rendering with Octane for C4D, and case studies are pre-
sented to illustrate the real-world impact of these optimi-
zation strategies. This study takes into consideration the
pros and cons of GPU rendering, offering insights into
maximizing the potential of the hardware available in the
artist‘s hands. Furthermore, the process of constructing a
functional frustum culling system for Octane scatter with
native C4D tools is meticulously described.

By the end of this research, readers will possess the
knowledge to excel their skills in offline rendering
scenarios and understand how to maximize the use of
the hardware at their disposal, showcasing best practices
in different aspects of scene optimization, and making in-
formed decisions when creating visually stunning works
in offline GPU rendering scenarios.

with Octane and C4D, many of which are unconsciously
applied on workflow used for this paper.

Florean Renaux (aka Florenaux) Youtube channel was a
major reference for environment concept art and on my
personal workflow with Octane’s scatter systems applied
in the produced scenes for this paper. Furthermore,
Renaux provides a free asset of high-resolution water
heightmaps that were used as displacement textures on
the water present on the reference scenes of this paper.

The official documentation of Octane Render and Ci-
nema 4D is also invaluable for this paper, bringing core
information about both software, such as explanations of
expression types and information about each tool availa-
ble and how to use those.

9

The methodology section of this thesis outlines the
systematic approach used to investigate how each of the
presented optimization techniques impacts GPU usage
and the final visual outcome within a quantitative re-
search framework. This section delineates the hardware
and settings used, research design, data collection met-
hods, and data analysis techniques employed to address
the research questions and objectives.

Every scene done for this paper was rendered in
1920x1080, 24 frames per second (FPS) and using path
trace kernel from Octane Render. The following hard-
ware settings were used for the tests:

•	 Intel i7-6800K CPU
•	 48GB RAM
•	 RTX 4090 - 24GB VRAM
•	 Windows 10
•	 Cinema 4D 2024
•	 Octane Render 2023.1

To have trustworthy parameters for analysis of hard-
ware usage, C4D logs, Octane Render logs, and Octane
Device Setting were of prime importance. Those tools
provided solid data to compare the results of each pre-
sented situation. To collect solid data, equal performance
across the different renders, and optimal computer
performance, the following steps were followed before
starting rendering:

1.	 Restart the computer.
2.	 Close all non-necessary software.
3.	 Terminate every non-essential process in Win-

dows Task Manager.
4.	 Not use the computer for any task during the

rendering process.

The software MSI Afterburner was used to acquire a
real-time analysis of the hardware usage, helping to
comprehend how the usage of each technique impacted
the hardware, but it was not used as a data collection
tool for this paper. Understanding how each optimization
affects resources usage is fundamental when mana-
ging resources in a 3D scene; therefore, presenting the
necessary tools to equip the readers with tools for an
in-depth and trustworthy analysis of their 3D scenes was
considered when writing this paper.

Every scene was modeled in C4D and rendered with
Octane Render, being saved in EXR (Octane) format
with DWAB compression and compression level of 45.
When the resolution of textures had to be lowered, the

3.	Methodology

bulk resize function of Adobe Bridge 2024 was used,
and every resized texture was renamed with the Bulk
Rename Utility for Windows.

The development of the frustum culling was documented
in every step for this paper, presenting the pros and cons
of both developed versions while analyzing its perfor-
mance and effectiveness.

For this quantitative study, the crucial analysis criteria
for optimizations were VRAM usage, render time, total
render time, and RAM usage. Parameters such as visible
triangles or displayed meshes were mentioned but not
used as decisive factors. When analyzing the hardware
usage, the data collected from the render logs was tran-
scribed into charts to present a graphical comparison of
the influential factors for each optimization. The original
logs were also attached in the Appendix section of the
paper, presenting all the information acquired from the
software. As for the visual analysis, visual congruency
was used as the main criteria.

10

For time-sensitive productions, a balance between
production and rendering time is necessary. It is crucial
to be aware of the most effective optimizations for each
situation and applying those since the beginning of the
project ensures optimal system performance, mitigating
the risks of software crashes and potential bottlenecks.

A project that runs smoothly on a system empowers
the artist to work more efficiently, providing more time
for refinements, thereby opening possibilities for more
creativity and higher-quality results.

GPU rendering has its limitations, of which the most
important is making large scenes with large numbers of
assets, complex shaders, high-resolution textures, and
multiple light sources fit in the VRAM (Video Random
Access Memory) available in the Graphic Card. On the
other side, the biggest advantage of rendering on a GPU
is its speed, so it is of major importance to take advan-
tage of it.

Render engines have settings that enable speed impro-
vements at cost of VRAM; therefore, optimizing the

GPU renderers play a crucial role in time-sensitive
productions, such as animation or visual effects for
advertisements, where the production cycles are shorter.
Meeting the deadline is a top priority, and reducing
rendering time minimizes the risk of delays.

The speed and efficiency of GPUs for rendering are well
known, and they are invaluable for productions where
rapid iterations and sudden turnarounds are required.
The scalability of the hardware can provide even higher
speeds without requiring great changes to the system.
Furthermore, it is cost-effective, as it can significantly
reduce rendering times, with associated hardware costs
lower compared to CPU-based solutions.

Rendering is the last step of the 3D pipeline. Prior to
this process, the scene must be complete, with models
and their animations arranged, shaders (which control
the appearance of 3D objects, e.g., textures and material
properties) and virtual light sources configured, and 3D
cameras properly tuned, aiming to make the final visual
look appealing and realistic.

For that, the 3D artist requires the interactive feedback
of the render engine, a preview accurate in detail but not
in full resolution of the scene, with a relatively rough
and fastest possible light calculation. It is an essential
feature when making quick decisions and adjustments to
the visual. Thus, the speed of this interaction has a direct
impact on the overall time needed for a 3D production.

4.	Results

4.1	 Research Objectives

4.2	 Relation of GPU Renderers to Time Sensi-
tive Productions

4.2.1	 Impact on Artists Work-
flow

memory usage allows the artist to benefit from those fea-
tures. Knowing how each task impacts the hardware can
bring different perspectives to the artist while developing
something aimed at being rendered in GPU.

This section provides a brief introduction to GPU tech-
nology and techniques, laying the foundation for subse-
quent discussions on advanced resource management in
a 3D scene. It introduces essential knowledge to leverage
current GPU technologies, software features, and rende-
ring techniques. Further in this chapter, specific techni-
ques for enhanced resource management are explored,
with an analysis of their potential impact on the visual
outcome of the 3D scene, all exemplified using Octane
Render for C4D. Properly optimizing 3D scenes not only
results in performance enhancements but also allows the
project to run on a wider range of systems with different
hardware settings and elevates the visual quality of the
output image. If the visuals do not meet the needs of the
project, an optimization becomes unnecessary.

11

GPUs and their high-speed rendering provide faster
feedback, enabling artists to accelerate their work while
producing something. The Live Viewer is the interacti-
ve feedback tool from Octane, and it includes multiple
features to speed up the previsualization, such as render
region and clay modes. The C4D Octane User Documen-
tations present concise explanations for those:

CLAY MODES: A toggle that will render your
scene in grayscale without textures (the result
looks like Clay). This is useful to check the overall
light distribution in your scene. You can also use it
to review Shadows and Ambient Occlusion.

RENDER REGION & FILM REGION: These
commands are used to render just a portion of the
scene in Live Viewer, allowing multiple adjust-
ments to an object or material in your scene.
Select Render Region from Live Viewer and see
only that part of the scene, without waiting for the
rest of the image to render. This is useful to dial in
material settings without waiting for the full frame
to render. (C4D Octane User Documentation, n.d)

In the NVIDIA Success Story, GPU Rendering with
Octane Lets Elastic Spend More Time Creating (n. D.),
published by NVIDIA, illustrates how the fast interactive
feedback of GPU rendering is a great advantage for 3D
production:

With the demand for more complex imagery done
at a high standard in less time, GPU rendering all-
ows Elastic to keep pushing its creative and visual
boundaries. The interactive feedback has given
artists the power to take shots further, irrespective
of deadlines. Time efficiencies also put more jobs
in play, giving the firm the ability to engage in
work that wasn’t always possible before, while
providing the time necessary for creative develop-
ment (S. 4).

Chalet (2016) points out the relevance of time optimi-
zation in rendering for advertising productions in her
article CG in Ads: The Evolution of Advertising Part 1
[The Graphic Masters Series]:

But while the creative opportunities are seemingly
limitless, project deadlines aren’t. Shorter produc-
tion cycles and higher client expectations are two
of the biggest challenges facing studios today. You
might have a team of CG artists who are proficient
in the latest software, but if you can’t render your
state-of-the-art imagery in the tight timescales
allocated, you’ll lose the contract (Chaleat, 2016)

4.2.2	 Impact of Faster Interacti-
ve Preview

12

4.4.1	 Hardware Limitations

This research focuses on optimizing hardware usage for
GPU rendering in offline rendering scenarios, aimed at
providing a thorough analysis of resource consumption
and improvement strategies, all while considering the
impact of each presented technique on the visual outco-
me of the rendered image.

This study contains a comprehensive guide on how to
build a frustum culling for Octane‘s scatter system with
native C4D features, analyzing its impact on the GPU,
render time, and final look of the scene.

Further, provide useful information on how to quickly
resize the multiple textures from an external asset while
using Adobe Bridge and its image bulk resizing feature,
aiming to reduce VRAM consumption on a 3D scene. In
the sequence, it was explained how to quickly replace
the original texture with its optimized version using the
Octane Texture Manager.

In the process of rendering, graphics cards are limited by
the VRAM (graphics memory). The VRAM, a version
of the RAM (main memory) specialized for graphics
processing, runs at a higher frequency and is a volatile
memory like the RAM. The function of both is to tempo-
rarily store data and calculations that are currently being
executed. The VRAM is connected to the GPU, and the
RAM to the CPU.

If a 3D scene includes high-poly models (models with
a high number of polygons, resulting in a high level of
detail and complexity), high-resolution textures, compli-
cated shaders, animations, and lighting, then it requires
more calculation power to compute the rendering, for
which a GPU‘s VRAM may not be enough since the
GPU‘s computing power is tied to the VRAM‘s cache
memory. The CPU, on the other hand, is slower but
has no limitations in its cache memory and better final
rendering results. Brian Caulfield (2009) elaborates on
another difference between graphics cards and proces-
sors in his article What‘s the Difference Between a CPU
and a GPU?

Architecturally, the CPU is composed of just a few
cores with lots of cache memory that can handle a
few software threads at a time. In contrast, a GPU
is composed of hundreds of cores that can handle
thousands of threads simultaneously (Caulfield,
2009).

•	 Memory Constraints:
GPUs have limited memory compared to CPUs,
which can restrict the complexity of scenes that can
be rendered. It is not possible to add more VRAM
to a graphic card, contrary to the RAM. Large and
intricate scenes may exceed GPU memory capacity,
leading to performance degradation or rendering
failure.

•	 Real-Time Rendering vs. Offline Rendering:
While GPUs are excellent for real-time rendering in
applications like video games, they might struggle
with the demands of high-quality, photorealistic off-
line rendering. Offline rendering often requires more
computational resources and advanced algorithms,
which can strain GPUs.

4.3	 Scope and Limitation

4.4	Aiming for the Hardware

An analysis of optimization techniques for VDB meshed
(aimed at the native volume builder system from C4D)
is presented, while illustrating examples of common
failures that can come along the way and exemplifying
how to avoid them.

Furthermore, it provides an in-depth explanation of the
instance types, comparing the performance of those in-
side C4D, and presents a factual analysis of the resource
consumption between them.

At last, features from the render engine aimed at expe-
diting the rendering process are presented, exemplifying
how those can be of use to speed up the interactive
preview and reduce rendering time while maintaining
image quality.

Meanwhile, GPUs, with their thousands of cores, are
thus better at processing millions of identical operations
since these operations can be processed in parallel by
the multitude of cores. CPUs, however, process these
operations sequentially with their few but more powerful
cores.

13

•	 Algorithmic Limitations:
Some rendering algorithms are better suited for
GPUs than others. While GPUs excel at paralle-
lizable tasks, algorithms that are inherently serial
in nature might not benefit as much from GPU
acceleration.

•	 Precision Issues:
GPUs operate with limited precision due to the finite
number of bits available for representing numbers.
This can lead to issues with accuracy and artifacts in
rendering, especially for certain types of simulations
or physically based rendering (PBR). For this reason,
GPU renderers provides a less precise image then
CPU renderers.

•	 Specialized Hardware:
While GPUs are versatile, they are not designed for
all types of computations. Certain rendering tasks,
such as ray tracing or global illumination, might
require specialized hardware or hybrid rendering
approaches to achieve optimal results.

Current Graphic Cards, such as NVIDIA RTX cards
with RT Cores, are now able to better approach ray
tracing. Through an AI analysis of the scene to be
rendered, NVIDIA provides the user with the ability
to implement the calculation of light rays in real time
with their graphics cards.

•	 Energy Consumption:
GPUs are known for their high-power consumption,
which can be a concern for energy efficiency, especi-
ally in scenarios where rendering is performed on a
large scale, such as data centres.

•	 Interactivity and Responsiveness:
While GPUs can provide real-time rendering for
interactive applications, there can still be latency and
responsiveness issues, especially when dealing with
complex scenes or when multiple computations are
running in parallel.

•	 Data Transfer Bottlenecks:
Transferring data between the CPU and GPU can
cause bottlenecks, particularly in situations where
frequent data exchange is required. This can impact
performance and efficiency. There are functions that
allows a GPU renderer to use of the RAM memory
while strongly affecting the render speed.

•	 Limited Software Support:
While GPU rendering has gained significant traction,
not all software applications fully support GPU ac-
celeration. Compatibility and optimization can vary
between different software platforms.

•	 Speed and Efficiency:
One of the most significant advantages of GPU
rendering is its speed. GPUs are designed to perform
parallel computations efficiently, making them well-
suited for rendering tasks. In offline scenarios, where
time is not as constrained as in real-time applicati-
ons, GPUs can significantly reduce rendering times
compared to CPU rendering.

•	 Scalability:
GPUs can be easily scaled by adding more GPUs
to a rendering setup. This scalability is valuable for
handling complex scenes or rendering tasks that
require substantial computational power. It is im-
portant to notice that while rendering, stacked GPUs
do not add up their VRAM, but just their available
cores. The graphic memory is limited to the VRAM
of the main GPU on the hardware, however the
rendering speed grow accordingly to the number of
cores available.

•	 Realistic Graphics:
Modern GPUs support advanced rendering techni-
ques, including ray tracing and global illumination,
which can produce highly realistic and visually stun-
ning images. This is especially beneficial for offline
rendering scenarios where quality is a top priority.

•	 Parallel Processing:
GPUs are capable of processing thousands of threads
simultaneously, allowing them to efficiently handle
tasks like ray tracing, path tracing, simulating com-
plex materials and lighting.

•	 AI Acceleration:
GPUs are well-suited for AI-based rendering techni-
ques, such as denoising or upscaling, which can im-
prove the efficiency and quality of offline rendering.

•	 Maintenance and Upgrades:
Keeping up with the rapid pace of GPU hardware
advancements can be challenging. Older GPUs
might quickly become obsolete, requiring constant
upgrades to maintain optimal rendering performance.

Despite these limitations, GPUs remain a cornerstone of
modern computer graphics and rendering, while ongoing
research and technological advancements continue to
address many of these challenges. Hybrid approaches
that combine GPU rendering with other techniques, such
as CPU rendering or cloud-based solutions, are often
used to mitigate some of these limitations and achieve a
balance between performance and quality.

4.4.2	 Hardware Strengths

14

Scene optimization techniques are essential for im-
proving rendering efficiency and achieving optimal
performance in any render engine, whether CPU- or
GPU-based. However, when rendering on a GPU, the
VRAM usage needs to be taken into consideration. To
make the most of what GPU rendering offers, lowering
memory usage is always an advantage. Therefore, proper
handling of assets, textures, and lights is of invaluable
importance.

Optimization techniques should be present since the
beginning of the production process, and they must be a
natural part of the artist’s workflow. In this section, key
concepts of multiple optimization techniques are briefly
explained.

4.5.1	 Level of Detail

The level of detail (LOD) involves creating multiple
versions of an object or model at different levels of com-
plexity. When distant or in less visible parts of a scene,
lower-detail versions can be used, reducing the computa-
tional load and improving rendering speed. Both biased
and unbiased render engines can benefit from LOD to
enhance efficiency.

Dynamic LOD systems are not commonly used in
production. The level of detail of each model is chosen
according to the needs for detail in the respective scene.
However, most of the 3D animation software have dyna-
mic LOD tools available.

4.5.2	 Culling Techniques

Various culling techniques, such as frustum culling
and occlusion culling, help determine which objects or

•	 Interactive Preview:
GPU rendering can provide near-real-time feedback
and interactive previews of scenes, enabling artists
and designers to make quick iterations and adjust-
ments to achieve the desired result.

•	 Community and Support:
GPU rendering benefits from a large and active user
community, resulting in a wealth of online resources,
tutorials, and support. Due to the accessibility to
GPUs, the user community and the availability of
related content has expanded.

4.5	 Accepting the Pain: Dealing with Hard-
ware Limitations

•	 Multi-GPU Support:
Many rendering software packages support multi-
GPU setups, which can further accelerate rendering
times in offline scenarios.

Overall, GPU rendering offers a powerful and efficient
solution for offline rendering scenarios, particularly
when high-quality, photorealistic results are desired, or
when time and cost efficiency are crucial considerations.
It has become a standard in the film, animation, and
visual effects industries for its ability to deliver stunning
visuals in a timely and cost-effective manner.

parts of a scene are not visible to the camera and can be
excluded from rendering calculations. This optimization
reduces unnecessary computations and accelerates rende-
ring.

4.5.3	 Baking Lights into HDRI

Multiple light sources consume resources and increase
rendering time. Baking Lights into HDRI images main-
tain quality and drastically reduces calculation time.

4.5.4	 Instances and Batch

Instancing involves rendering multiple instances of the
same object using a single set of geometry data. The
batching process group similar objects together and
render those in a single draw call. These techniques
reduce CPU-GPU communication overhead and enhance
rendering speed.

4.5.5	 Geometry Simplifications

Simplifying complex geometry by reducing polygon
count or using simplified mesh representations optimizes
rendering efficiency. This technique can be applied to
objects that are less visible or have a minor impact on the
final image quality.

4.5.6	 Texture Atlasing

Combining multiple textures into a single texture atlas
reduces memory consumption and improves cache
efficiency. This technique is useful for optimizing texture
loading and rendering performance.

15

4.6.1	 Gathering Render Infor-
mation

4.6.1.1	 C4D Console

4.6.1.3	 Hardware Monitoring: MSI After-
burner

4.6.1.2	 Octane Device Setting

Direct in C4D console (Shortcut: shift + F10), it is pos-
sible to acquire detailed information about the render, as
shown in Figure 1:

The Device Setting window is found under the Octane
settings and provides an accurate account of how much
VRAM is used in a scene and how it is being allocated.

When troubleshooting, optimizing, or analyzing a 3D
scene, it is important to follow in real-time the impacts
each modification has on the hardware, such as variation
peaks on VRAM, RAM, or CPU usage. For that, MSI
Afterburner provides all this information in real-time, in
a clean interface with separated graphs for each resource.

4.6	 Optimizing the 3D Scene: Collecting Data
through Experimentation

Figure 1.	 C4D Console view

Figure 2.	 Octane Device Setting
Figure 3.	 Hardware Monitoring in MSI Afterburner

4.5.7	 Texture Resolution

8K textures have better quality but are not always ne-
cessary and can result in useless data being loaded to the
memory. Higher resolution textures have higher impact
on VRAM usage and render time.

4.5.8	 Procedural Textures

Procedural textures and effects are generated on-the-fly
rather than stored as pre-made textures. This can signifi-
cantly reduce the memory footprint of the scene since it
does not need to be loaded into GPU memory.

4.5.9	 UV vs. Triplanar Texturing

UV Mapping takes time, so triplanar texturing can be the
solution for a faster workflow when texturing.

4.5.10	Caching

Caching involves storing precomputed data for reuse,
reducing CPU-GPU communication. Caching enhances
rendering speed by avoiding redundant calculations in
subsequent frames or scenes, cutting out the calculation
time of each frame, consequentially reducing render time
of animations and reducing computational power needed.
A common method for caching animated scenes is with
Alembic (ABC) files.

16

4.6.1.4	 C4D Render Log:
After rendering, C4D also saves a log in the scene file
directory. This log provides mostly render time and file/
environment information; therefore, it is not of much use
for this paper and will not be taken into consideration.

However, it is good to know that this file provides the
following information about the project:

•	 Used hardware for rendering (processor type,
operational system, GPU)

•	 Scene information used for the render (render
settings, active camera, active take, resolution,
FPS, and frame range)

•	 Path of the rendered images
•	 Render time per frame and total render time

17

4.6.2	 Frustum Culling for Octa-
ne Scatter

In this section, the development of a frustum culling
setup for octane scatter was documented and carefully
described. The only tools necessary for that are the ones
available in native C4D. An important aspect to be con-
sidered for this topic is that the scattering system inside
Octane is already highly optimized, which results in low
VRAM consumption. However, culling the scatter helps
reduce its impact even further.

Observation note: When working with smaller
scattered areas containing fewer objects, the
viewport FPS drastically improves while scatter
is active.

Cinema 4D provides its users with the field system, an
invaluable feature for the frustum culling developed in
this paper. Fields can be mixed with multiple tools inside
C4D, bringing a wide range of possibilities for the artist.

The use of linear fields, along with the principle of object
parenting (when the child object inherits the coordinates
of its parent), was the basis for this idea.

•	 “Backfield Culling” – The start of the idea.
In this first experiment, a single linear field was parented
to the camera, inheriting its coordinates (position and
rotation) and subtracting everything behind the camera‘s
position. The Figure 5 illustrates how it affects the vertex
map:

Despite being a functional idea and providing positive
results, it is not the optimal solution. There is still a
large area being calculated that is not visible through the
camera‘s field of view (FoV). The proper frustum culling
area should exclude everything that is outside the FoV.

Figure 4.	 Frustum Culling Octane Scatter

Figure 5.	 First concept - Preview culling through Vertex Map

4.6.2.1	 Building the Frustum Culling Area
The goal of frustum culling is to remove everything
outside the FoV. To achieve this goal, it is necessary to
combine four linear fields, one for each side of the view
plane, and the length of each field needs to be set to zero.

It is crucial to note that manually positioning the linear
fields would be an outdated solution. The goal is to
build a system that self-adapts according to the camera
settings, and Xpresso is the best choice to automate this
process using native C4D tools.

The FoV from the 3D camera was utilized as a control-
ling parameter for establishing the precise horizontal and
vertical rotation of each field. This value can be obtained
from the camera settings.

18

The mathematical expressions for calculating the hori-
zontal and vertical angle of view (AoV) of a camera, ac-
cording to its focal length and dimension, are presented
and explained next. These calculations are crucial when
setting the rotations of the planar fields in Xpresso.

The Calculator Academy explains on its website that the
AoV “(...) is the total extent of a scene that a camera can
see. This term is also sometimes referred to as field of
view.”

•	 Horizontal AoV
The horizontal rotation of the fields responsible for
the left and right borders of the camera view can be
calculated simply by dividing the horizontal FoV by
2. However, if the horizontal FoV is not provided by
the software being used, the mathematical expression
needed to reach the same result is explained below.

AOV = 2arctan (d ÷ 2f)

•	 Where AOV is the angle of view
•	 d is the chosen dimension (often film or sensor

size) (width)
•	 f is the effective focal length.

“To calculate the angle of view, divide the sensor
size by 2 times the effective focal length, take the
inverse tangent of this result, then multiply by 2.”
(Calculator Academy, n.d.)

Figure 6.	 Xpresso graph - Frustum culling basic setup

•	 Vertical AoV
The vertical rotation of the fields responsible for the
top and bottom borders of the camera view.

VFOV = 2 × atan (tan (h ÷ 2) × AR)

•	 Where VFOV is the vertical field of view
•	 h is the horizontal field of view
•	 AR is the aspect ratio (i.e. 16:9 = 16/9 = 1.7777)

“To calculate the vertical field of view first take
the tan of the horizontal field of view divided by
two, multiply the result by the aspect ratio, take
the arctan of that result, and then multiply by 2.”
(Calculator Academy, n.d.)

Converting the mathematical expressions into the
Xpresso language results in the node graphic presented
in Figure 6.

19

Figure 7.	 Previewing influence of pivot position on effectors

•	 Conclusion:
As explained, the effect just takes place after crossing the
pivot position, resulting in the gradual color change.

There are three different ways to solve the problem on
the culling system:

•	 Instead of letting the field object zeroed into the
camera position, manually moving them left
or right, above or below the respective culling
direction.

•	 Adding an extra rotation to the planar field. This
can be done in Xpresso – Each situation needs
its own variation in the rotation angle; therefore,
providing a new node to control this parameter is
an optimal solution for it.

•	 Moving the group containing all four fields
further behind the camera, thus providing enough
space for the objects closer to the camera to get
out of the view sight.

The best solution found was mixing two of the given
options: bringing the group containing the fields further
behind the camera and adding the extra rotation angle for
each field, as illustrated in Figure 8:

4.6.2.2	Troubleshooting
When the culling area covers the exact size of the FoV,
issues arise with the culled scatter: the geometry to be
culled is still inside the FoV, therefore it is possible to
see it disappearing.

The reason for this is simple: the culling process begins
precisely at the pivot position of the object, which is a
point holding only position information without any area
or volume. In contrast, the geometry contains a bounding
box, a box that surrounds the 3D object, which occupies
an area and volume. Despite the pivot going out of the
view sight, the same cannot be applied to the geometry
itself.

There are other situations in C4D that relate to this fact.
A simple example to illustrate this behavior is presented
in Figure 7. A cloner without “reset cordites” is affected
by an effector with a linear field. The pivot of the cloned
object is not centered. As soon as the effect takes place,
the objects must gradually change color

Figure 9.	 Final Xpresso graph - Frustum culling setup

Figure 8.	 Representation of the final positioning of the fields

The corrected Xpresso graph with the new mathematical
functions stays as shown in Figure 9:

20

4.6.2.3	Bringing the Frustum to Life

4.6.2.4	Method one: Frustum Culling the
Vertex Map

There are two viable ways to apply the frustum in the
scatter systems: one is fully calculated through ver-
tex maps, while the other is calculated through a plain
effector on the scattered objects. The biggest difference
between those options is their overall control over the
final look.

01. Calculating a vertex map, which sets the area
where the scattered should be applied.

02. Scattering objects on the entire surface and
subsequently deactivating all objects outside the FoV
using a plain effector.

The biggest difference between those options is the over-
all control over the final look.

Now that the planar fields are properly positioned, they
need to be blended and structured correctly. In order to
achieve the desired result, all the planar fields should
aim inside the FoV. This way, blending them in multiply
mode will result in the exact FoV.

The planar fields used to build the culling area are ap-
plied in multiple vertex maps; therefore, the most logical
way is to group them in a group field.

Observation note: This group field still accepts
other different fields for further culling operations,
which can be independent of the camera move-
ment.

When all four linear fields are in the correct direction
and blend mode, the group field itself can be applied
on top of the field’s hierarchy of any vertex map. There
are three possible blend modes to use: min, multiply, or
clip. The choice is made according to the needs of each
situation.

Figure 11 serves the purpose of previewing the frustum
area:

The last step is applying the corresponding vertex map to
each Octane scatter system.

Figure 10.	 Setting up and blending the planar fields

Figure 11.	 Preview culled vertex map - Blended planar fields

Figure 12.	 Applying vertex map

Observation note: As a personal setting, I like set-
ting the group field on top of my scene, while the
linear fields are inside a null parented to the came-
ra. However, parenting the group field and zeroing
out the coordinates to get the camera position and
rotations also work.

To add variation to the scatter distribution (scale,
position, and rotation), use procedural shaders on the
Distribution tab inside the scatter object; those must be
CPU-based shaders, meaning that Octane procedural
textures will not work.

Figure 13 illustrate the result, presenting how the objects
are scattered accordingly to the different camera positi-
ons. For demonstration purposes, the display mode of the
scatter is set to „geometry“. The results prove that both
the vertex map and scattered objects update as expected.

21

•	 Considerations
•	 The distribution modes are only texture-based

and are found inside the distribution tab of the
scatter system.

•	 The procedural textures for the distribution must
be CPU-based. Octane textures do not work.

•	 Gray-scale images can be used to restrict the
scattering area.

•	 Gray-scale textures or images are ideal when
controlling larger areas of the scattering system
distribution.

•	 Using shaders to control the scale provides areas
that are harder to fully cover, requiring more
instances to be scattered around.

Figure 13.	 Final result - Frustum culling the vertex map

•	 It is harder to achieve realistic randomization per
instance (in scale and rotation) since the distribu-
tion mode must be texture-based.

•	 When culling the vertex map, the scatter system
requires a denser mesh for the distribution surfa-
ce; otherwise, a “tilling effect” might happen.

•	 Effectors cannot be used to work on the distribu-
tion. Those are based on the number of instances
being scattered. If this number varies, the effect
applied to each instance will also change, brin-
ging glitches to the final animation – Since the
visible area of an animated camera is constantly
changing, using a vertex map based on the FoV
limits the active scattering area, therefore chan-
ging the number of active instances per frame.

22

Figure 14.	 Invert modifier applied on top of the planar fields

4.6.2.5	Method two: Frustum Culling with
Plain Effectors
Effectors are easy to comprehend and provide great
control over multiple objects.

The logic used in this method is the opposite of the logic
used on method one: instead of controlling where the
instances should be placed, it sets where they should be
deactivated.

The vertex maps delimitating the scatter region should
remain unchanged, delimitating where the objects need
to be placed over the entire surface. A plain effector will
be responsible for culling the geometries outside of the
FoV while using the group field.

It is possible to set an invert modifier on top of the group
field or simply invert the direction of each planar field.
However, inverting the active area works well.

Observation note: Using a group field containing
all linear fields remains a good choice, but it is not
essential this time. The fields are applied only to
the plain effector responsible to cull the geometry,
while this effector is applied over the multiple
scatter systems.

In this method, the culling is done through a single plain
effector, which contains the group field applied in the
Fields tab. To set the frustum culling, first activate scale
in the Parameter tab of the plain effector, set it to be
uniform and the value to -1 (everything that has a value
of -1 is turned off from calculations), then apply the
effector on each scatter system, as shown in Figure 15

Figure 15.	 Preparing the culling using plain effector

23

Now other C4D effectors can also be applied and stacked
in the Effectors tab of the scatter system, and the plain
effector acts as the frustum culling.

In this method, Octane scatters the objects on the entire
distribution surface and the plain effector deactivates it
in the non-visible areas. Therefore, the number of instan-
ces is always constant, allowing effectors to take place
without producing glitches.

•	 Considerations
•	 Using effectors is the most common workflow

when scattering objects with Octane.
•	 Texture distribution methods are still available

inside each scatter system, which provides more
control and freedom for the artist.

•	 Gray-scale images can be used to restrict the
scattering area of each scatter system.

•	 Effectors have a per-instance effect, providing a
more organic visual.

•	 The size of each instance is better randomized,
providing a more realistic feel of nature.

4.6.2.6	What are the Possible Problems
when Frustum Culling?
•	 Shadows Glitches
When light is coming from behind the camera, casted
shadows might be visible through the camera. Therefore,
culling geometries can yield problems on the final visual.
As soon as geometry disappears, the same will happen
with its shadows.

The example presented in Figure 16 illustrates the descri-
bed situation. Both images are extracted from the same
frame of the same animation. On the left, all the scattered
objects are visible, while on the right, the scatter systems
are being culled.

It is important to acknowledge that culling every scatter
system is not always the best solution. Since each scatter
system has its own control, there is the option to select
only the scatter systems that influence the shadow cas-
ting, without activating the culling system on those.

Observation note: culling only the smaller objects
scattered through the scene presented in Figure 16
(grass, fallen leaves, and stones) would not affect
the final visual congruency.

Figure 16.	 Example of shadow failures when culling geometries. On the left, all scattered objects are visible and on the right the
scatter systems are being culled

24

•	 Reflections
When reflective surfaces are present in the scene, the
culled area will be visible through them. Therefore, it’s
expected to have incongruencies in the rendered result. If
preserving the details in the reflections is not important,
culling is a good idea and will save VRAM.

The results are presented in Figure 17. On the left, the
frustum culling is active for every scatter system, and on
the right, the frustum culling is off. On the reflexes of
the metallic sphere, it is possible to see the results of the
culling.

Figure 17.	 Visualizing the culling through a reflective sphere

4.6.2.7	Frustum Culling: Performance
Analysis
In the next two examples, five scatter systems were used
to compose the scene:

•	 Small-scale Scene

Figure 18.	 Small-scale scene with a reflex ball to preview the scatter systems being culled

25

To set a reference parameter for resource usage, the same
frame in Figure 18 was rendered without scatter systems.
The rendered images and render logs (see Appendix A,
Table 1) were taken into consideration for the following
analysis. The information presented on the logs was tran-
scribed into charts, presenting a graphical comparison
between the performance results of each considered case:

When using the frustum culling system in a small-scale
environment, the considerations are the following:

•	 As more objects are culled, VRAM usage redu-
ces slightly. The opposite happens when more
objects get back into the FoV.

•	 There are no significant changes in VRAM
usage.

•	 There are no significant changes in the update
time.

•	 Render time has no significant changes.

•	 Conclusion:
When working on small-scale setups, culling does not
provide much improvement and therefore, should not
be considered a top-priority optimization technique.
Furthermore, the impact on performance does not justify
removing the details on reflexes or light bounces.

3,840

17,765

0,209

3,883

18,343

0,604

3,940

18,503

0,650

0,000 5,000 10,000 15,000 20,000

VRAM (Gb)

RAM (Gb)

UpdateTime
(sec)

Performance Analysis

Reference Frustum Active Frustum Off

18,231

36,560

36,065

0,000 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Re
nd

er
-T

im
e

(s
eg

)

Render Time

Reference Frustum Active Frustum Off

Table 1.	 Performance analysis of frustum culling system in
small scale scene

26

Figure 19.	 Large scale scene with scattering systems

Table 2.	 Performance analysis of frustum culling system in
large scale scene

•	 Large-scale Scene
To set a reference parameter for resource usage, the same
frame in Figure 19 was rendered without scatter systems.
The rendered images and render logs (see Appendix A,
Table 2) were taken into consideration for the following
analysis. The information presented on the logs was tran-
scribed into charts, presenting a graphical comparison
between the performance results of each considered case.

When using the frustum culling system in large-scale
scatter systems, the considerations are the following:

•	 As more objects are culled, VRAM usage redu-
ces slightly. The opposite happens when more
objects get back into the FoV.

•	 The frustum culling provides a small increase in
render time.

•	 The frustum culling reduces VRAM usage.
•	 RAM usage increases significantly with frustum

culling.
•	 Update time has made a significant impro-

vement, being enough to compensate for the
difference in render time.

•	 Conclusion:
If enough RAM is available, frustum culling larger
scenes brings improvements that should be taken into
consideration; it brings a considerable reduction in up-
date time per frame and reduces the VRAM usage.

2,882

14,237

0,251

2,961

19,602

0,725

3,100

15,581

2,086

0,000 5,000 10,000 15,000 20,000 25,000

VRAM (Gb)

RAM (Gb)

UpdateTime (sec)

Performance Analysis

Reference Frustum Active Frustum Off

12,896

42,221

41,399

0,000 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000

Re
nd

er
-T

im
e

(s
eg

)

Render Time

Reference Frustum Active Frustum Off

27

4.6.2.8	Comparing Performance and Visu-
al Outcomes of Both Methods

Figure 20.	 Comparing both culling methods - Culling the vertex map and culling with plain effector

The rendered images and render logs (see Appendix A,
Table 3) were taken into consideration for the following
analysis. The information presented on the logs was tran-
scribed into charts, presenting a graphical comparison
between the performance results of each considered case:

2,947

21,575

41,151

2,961

18,393

41,794

0,000 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000

VRAM (Gb)

RAM (Gb)

Render-Time (seg)

Comparing both Methods

Vertex Map Effector

There are no significant changes in GPU usage between
both methods; however, the RAM usage reduces when
culling the scatter with method two, culling with the
plain effector. Furthermore, it also allows the number
of scattered objects to be reduced by almost half, while
covering the same area.

Since effectors have a random per-instance effect, objects close to each other can have totally diffe-
rent scales, resulting in a more homogenic outcome. Meanwhile, texture distribution methods provide
a generic scale for the overall scatter system: objects positioned on darker areas of the shader are
smaller, and those gradually increase in size when getting closer to brighter areas of the shader. The
darker areas are harder to fully cover and, therefore, require a higher number of scattered objects.

Using shaders to control the distribution can provide
optimal results when working on larger chunks of ob-
jects, while randomizing the distribution with effectors
provides a more organic and realistic randomization per
object, not being biased by its position on a grayscale
image. Therefore, mixing both methods provides great
results and gives the artists more control over the look-
development (look-dev).

Table 3.	 Performance analysis of both developed frustum culling methods

28

4.6.3	 Bulk Resizing Textures

Textures play an important role in a 3D scene, as they
contribute with details, realism, and visual information
to 3D models and scenes. However, not every model
requires high texture resolutions, as sometimes they are
placed far from the camera and the fine details are not
even possible to be noticed on the rendering.

Nonetheless, when working with external assets, the
choice of image resolution and file type is limited and
can be above the needs of the project, resulting in useless
memory consumption.

E.g., assets from Quixel Megascans (Quixel Megascans,
n.d.) are offered with textures in 2K resolution or higher.
Often, small elements scattered throughout the scene
or those at greater distances do not require such high
resolution. A resolution of 1K or even 512x512 pixels is
sufficient in many cases.

There are straightforward options to quickly convert
these textures into an optimal format. This process is
commonly used by photographers when generating
previews of their picture in RAW format.

Adobe Photoshop, Lightroom, and Bridge can bulk re-
size images (resize multiple images at once), and during
the process it is also possible to change file type, conse-
quentially changing compression methods or bit-depth,
thus resulting in an even smaller file size.

4.6.3.1	 Setting Up Presets on Adobe
Bridge
Inside Adobe Bridge add a preset on the export tab for
the desired file resolution. If needed, multiple presets can
be added.

01. In the preset settings window, the option to save
the converted images in the original file location
must be selected.

Observation note: saving it to a subfolder helps
keeping everything more organized. This subfolder
can be named as pleased, but as good practice, the
name should clearly indicate the resolution of the
textures stored there.

02. Next comes the image format tab, where the file
type, bit-depth and color space can be set.

03. At last, is the image resize tab, where the settings
for image resolution are found.

Now draggin and dropping images on the presets will
create a queue, allowing to export everything at once.

Observation note: For organizational clarity,
rename the converted images by appending the
respective texture resolutions to the names. This
makes it easier to locate the appropriate texture.
The Bulk Rename Utility software is a fitting tool
for executing this task.

Figure 21.	 Export presets in Adobe Bridge

29

4.6.3.2	Changing Multiple Textures at
Once with Octane Texture Manager
The Octane Texture Manager presents every image being
loaded in Octane, also showing its name and file path.
Furthermore, it provides some features that will help
with this process, such as the “replace… with”.

In this example, only the highlighted files in Figure 22
are being replaced. For that, it is necessary to have a
unique way to point out which specific texture needs to
be changed (in the presented case, the identification code
of the asset from Quixel Megascans will be used).

Right after the code is the texture resolution, which cur-
rently is 2K and must be replaced with the 1K version, as
shown in Figure 23. Pressing replace will make Octane
search for the textures matching the name settings and
automatically locate and replace them in their directory.

Updating the shader will make the changes to be visible
in the viewport and render. This process must be repea-
ted for all textures that must be resized.

Figure 22.	 Finding the image textures in Octane Texture Manager

Figure 23.	 Replace function in Octane Texture Manager

30

4.6.3.3	Analyzing the Results
The same frame from Figure 20 was taken as an example
for the next analysis. All the texture images of the four
shaders applied to the scattered objects were replaced
with their 1K version image, resulting in a reduction of
237MB of VRAM usage while maintaining the same
quality on the rendered image.

Figure 24.	 Comparing texture resolution

Figure 25.	 Memory consumption with 2K and 1K textures

Octane Device Setting accurately presented how much
memory was used for textures in each situation of Figure
24, as can be seen in Figure 25.

31

4.6.4	 Model Optimization: Volu-
me Builder / VDB Geometries

Volume builder has become increasingly popular among
Cinema 4D users, whether for creating static geometries
or animations. It is an OpenVDB-based tool that allows
the artist to generate complex geometries very quickly,
providing much control of the result. VDB meshes are
generated by exploiting the properties of voxel grids,
which can result in highly dense meshes.

When working with refractive and reflective materials, a
dense mesh or a proper topology is necessary to achieve
an accurate response to light during rendering. There-
fore, optimizing meshes from volume builder requires
careful attention; otherwise, the results may not meet the
expected visual quality.

In this section, possible optimization processes for mes-
hes from volume builder will be presented. To set a refe-
rence parameter for resource usage, the same scene was
rendered without the geometry being analyzed. Certain
information from the render logs (see Appendix A, Table
4) was selected and transcribed into charts, presenting a
graphical comparison between the performance results of
each considered case.

Figure 26.	 Frustum Culling Octane Scatter

32

4.6.4.1	 Optimizing Static Geometries
The first thing to take into consideration when working
with a dense mesh is reducing its polygon count (po-
ly-count). Nowadays, the 3D software has great tools to
do this automatically, such as remesh and poly-reduction
tools. Furthermore, when working with VDB, it is also
possible to use the adaptivity feature when meshing
the volume. However, those features can also generate
problems in the process.

Examples of the static mesh and possible failures that
can happen during the optimization process of VDB
meshes are presented next, along with the differences in
VRAM usage, triangle amount, and render time among
those.

As a reference for calculation, a render of the scene
without the main geometry was made, as can be seen in
Figure 27.

Figure 27.	 VDB Mesh: Refe-
rence for calculations

Figure 28.	 VDB Mesh - Original (Dense Mesh)

Figure 29.	 VDB Mesh - Adaptive mesh active

Figure 30.	 VDB Mesh - Remeshed geometry

0,006

1,794

1,285

2,161

0,461

2,034

0,218

2,002

0,000 0,500 1,000 1,500 2,000 2,500

Tris (mil)

VRAM (Gb)

VDB Geometries Analysis

Reference Dense Mesh Adaptive On Remesh

35,557

47,872

47,234

47,186

0,000 10,000 20,000 30,000 40,000 50,000 60,000

Re
nd

er
-T

im
e

(s
eg

)

Render Time

Reference Dense Mesh Adaptive On Remesh

Table 4.	 Performance analysis of the optimizations on a
volume builder geometry

•	 Static Geometry - Results Analysis:
•	 Dense mesh uses significantly more VRAM than

the retopologized mesh (retopo-mesh).
•	 The render time of the different methods is

almost the same.
•	 The reflections on the retopo-mesh are better.
•	 The final shape of the retopo-mesh is smoother.
•	 The lowest poly-count is the remeshed version.
•	 Adaptive mesh produces irregularities on the

mesh, which strongly affect the reflections.
•	 When “adaptive” is set up, there is a significant

polycount reduction, but at the cost of the final
shape quality.

33

4.6.4.2	Special Situations – High Detailed
Geometry
For the example presented next, the remeshed geometry
presented before was used in every situation. The only
geometry that changes is the fluid geometry.

It is important to acknowledge that highly detailed VDB
meshes or simulations are commonly set in high import-
ance on a 3D scene; otherwise, the VDB simulation itself
would be in lower resolution, consequently resulting in a
mesh with lower polycount and fewer details.

It is important to mention here that VDB meshes are
commonly cached, reducing the long calculation times
and also avoiding software crashes. However, this is not
the focus of this topic.

Figure 31.	 VDB fluid geometry - Original (Dense Geometry)

Figure 32.	 VDB fluid geometry - Adaptive mesh active

Figure 33.	 VDB fluid geometry - Remesh

Table 5.	 Performance analysis of the optimizations on a high
detailed VDB geometry

•	 Fluid - Results Analysis:
•	 Dense mesh preserves the fine details.
•	 Dense mesh has accurate reflections and refrac-

tions.
•	 When “adaptive” is set, even with a small

reduction in the polycount, the reflections and
refractions become inaccurate.

•	 Retopo-mesh has good refractions and reflections
at the cost of the fine details in its shape.

•	 Retopology is not recommended for animated
meshes and would not be an option when wor-
king with fluid animations.

0,006

1,794

1,742

2,264

1,633

2,245

0,725

2,086

0,000 0,500 1,000 1,500 2,000 2,500

Tris (mil)

VRAM (Gb)

Highly Detailed VDB Geometry - e.g. Fluids

Reference Dense Mesh Adaptive On Remesh

35,557

122,013

121,188

111,483

0,000 20,000 40,000 60,000 80,000 100,000 120,000 140,000

Re
nd

er
-T

im
e

(s
eg

)

Render Time

Reference Dense Mesh Adaptive On Remesh

34

4.6.4.3	Compairing the Final Scene

Figure 34.	 On the left, the optimized scene and the right, the scene with the original VDB geometries

1,742

2,264

2,808

2,456

0,000 0,500 1,000 1,500 2,000 2,500 3,000

Tris (mil)

VRAM (Gb)

Final VDB Scene

Remesh Geo + Dense Fluid All Dense Mesh

122,013

123,307

0,000 20,000 40,000 60,000 80,000 100,000 120,000 140,000

Re
nd

er
-T

im
e

(s
eg

)

Render Time

Remesh Geo + Dense Fluid All Dense Mesh

Table 6.	 Graphic camparison of both optimized and non-optimized scenes

4.6.4.4	Final Considerations
GPU renderers can rapidly process polygons; hence,
reducing the polycount does not always decrease render
time, but it does reduce VRAM consumption.

In the presented example, the reduction in render time
when remeshing the liquid was related to the amount of
information generated through the reflections and refrac-
tions. Due to the significant loss of detail in the fluid, the
number of light bounces needed within the geometry has
consequently decreased. A highly detailed refractive sur-
face allows more light rays to bounce around, resulting
in an increase in render time.

On the voronoi geometry, the remeshed process ge-
nerated an optimal topology with accurate reflections

and a sixth of the polycount, resulting in a reduction of
almost 200 MB of VRAM usage. Since its material was
not refractive, there was no significant improvement in
render time.

When a highly detailed mesh derived from a VDB object
is included in the scene, it is commonly set as a high-
importance element, demanding a substantial level of
detail. Consequently, it is advisable to focus on optimi-
zing other elements within the 3D scene. Alternatively,
a second option involves diminishing the quality of the
VDB simulation, leading to a lower poly mesh. The
optimal render quality is achieved with the original VDB
mesh, the dense mesh.

35

4.6.5	 Instance vs. Multi-Instance

4.6.5.1	 What are Instances?
Instances are procedural copies of a geometry. It is
useful to replicate or duplicate objects in a 3D scene.
Instead of generating the same geometry set twice, those
are referenced or pointed to the original object data,
allowing the creation of multiple copies of this object
without significantly increasing the resources required.
Furthermore, when modifying the original geometry, all
its instances will be modified accordingly, avoiding the
need to edit each copied element.

In C4D, instances are commonly known as Clones be-
cause, most of the time, they are used in Cloner Objects.
The concept of instances is commonly applied in the 3D
world and is present in most of the 3D software.

There are three types of instances: instance, render-in-
stance, and multi-instance. As Benson (2023) mentions
his guide Resource Management 04: Instances, Octane
does not deal well with render-instances; therefore, those
will not be mentioned in this paper.

Figure 35.	 (Benson, S. (2023). Memory usage and limitations
of instances [image]. OTOY. https://help.otoy.com/hc/en-us/ar-

ticles/13900681276571-Resource-Management-Instances)

•	 Instances: Multi-Instance Mode
Multi-instances provide major benefits in terms of per-
formance and efficiency. Every object is considered one
and is loaded only once on VRAM and RAM. However,
this efficiency comes at the cost of versatility when it co-
mes to individual animation, deformation, and texturing.

[…] C4D isn’t great at managing a whole lot of
single objects. The Instance mode of the Cloner
really highlights this limitation when we go over
a few thousand instances. Multi-instance remo-
ves this issue by treating the entire system as one
single object. Suddenly a few hundred thousand,
or even a million clones is no big thing. Since
the source geometry only gets loaded into RAM
and VRAM once (instead of for each clone like
in Instance mode), this means we can potentially
have billions or even trillions of polygons in our
renders. (Benson, 2023)

•	 Instances: Instance Mode
When an object is instanced in instance mode, it has
small limitations on its controls, but those are exact co-
pies of the original object, i.e., when the original object
is modified, its instances are also modified accordingly.
Benson (2023) provides the following description in
the part four of his guide Resource Management 04:
Instances:

Creating an Instance Object set to Instance mode
is very similar to just making a copy of the object
[…], but it has the added benefit of being able
to modify or swap the source geometry once and
having all the linked Instances update to match.
It’s great for creating, manually placing, and
deforming a few variations of an object in a scene.
We can’t adjust the parameters (fillet, segments,
size) of the instance, but we can directly adjust
anything in the Coordinates tab (position/scale/
rotation). (Benson, 2023)

Figure 36.	 (Benson, S. (2023). Memory usage and limitations
of multi-instancing [image]. OTOY. https://help.otoy.com/hc/en-
us/articles/13900681276571-Resource-Management-Instances)

36

Furthermore, multi-instances do not support nested
instancing (i.e., a multi-instance cannot instance a group
that already contains a multi-instanced object inside).
The following example serves to illustrate the concept of
nested instances.

Main cube:

Inside the group “MAIN CUBE” is a cloner in-
stancing the smaller cubes in multi-instance mode,
as presented in Figure 37.

Figure 37.	 Main cube Figure 38.	 Nested multi-instances

Figure 39.	 Remove nested multi-instances

Cloning the original cube with nested multi-instances:

When cloning the group “MAIN CUBE” in multi-
instances mode (nested multi-instances), it gene-
rates problems on the original object, as presented
in Figure 38.

Removing the nested multi-instances and cloning the
cube:

Once the cloner instancing the smaller cubes is
set to instance mode, the cloner multi-instancing
the “MAIN CUBE” starts working properly, as
presented in Figure 39.

37

4.6.5.2	Performance Test with Instance
Modes
The scene above will serve as an example for this topic.
There are five different car models and one null object
being cloned on the scene.

Since each normal instance has an impact on the VRAM
usage, having a great number of detailed models copied
through the scene will have a greater impact on memory.

When rendering the Parking Lot scene with the cloner
object in Instance Mode, the VRAM usage went over
the maximum available memory, making it impossible
to render the scene and, as result, generating the crash
report presented on Figure 41.

Figure 40.	 Analysed scene to compare performance of instance modes

Figure 41.	 Crash report - system out of memory

However, when the cloner is set to multi-instance mode,
there is a discernible difference in resource consumption,
which enables the scene to be rendered. See Appendix A,
Table 5 for the full logs related to this topic.

78,818
12,936

4,735

18,135

56,765

0,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Tris (mil)

VRAM (Gb)

RAM (Gb)

Render-Time (seg)

Instance vs. Multi-Instance

Instance Multi-Instance

Table 7.	 Graphical comparison of different instance modes in
a complex scene.

38

4.6.5.3	Adapted Scene for Analysis:
For the purpose of analysis, an adaptation of the original
parking lot scene was prepared to compare the resource
usage between instances and multi-instances in practice.
The analysis draws on the render logs (refer to Appendix
A, Table 6), and the necessary information was selected
and transcribed into charts for a graphical comparison of
performance results in each considered case.

•	 Base for calculation: rendering without clone/
instances:

Figure 42.	 Instancing - Reference for calculations

Figure 43.	 Cloner in instance-mode Figure 44.	 Cloner in multi-instance mode

•	 Cars in Instance Mode: •	 Cars in Multi-Instance Mode:

4,258

3,673

13,878

44,595

52,731

12,454

32,227

61,948

12,940

5,317

17,042

61,441

0,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Tris (mil)

VRAM (Gb)

RAM (Gb)

Render-Time (seg)

Instance vs. Multi-Instance

Reference Instance Multi-Instance

Table 8.	 Graphical comparison of scene using different instance modes

39

Rendering with normal instances had a major impact on
the results, leading to a substantial increase in VRAM
and RAM usage, with no significant changes in rende-
ring time.

Observation note: The images rendered also
present differences on the result of the shading bet-
ween the different instance-mode types, but it does
not come into question for this topic.

•	 Conclusion:
Knowing the appropriate instance mode for each situa-
tion has a significant impact on scene performance, ma-
king it one of the most important techniques presented
in this paper. Duplicating multiple high-quality models
across a scene can rapidly increase memory consump-
tion, leading to poor project performance, crashes, and
bugs.

4.7	 Aiming for Speed: Engine Settings

4.7.1	 Adaptive Sampling

As an unbiased render engine, Octane samples every
area of the image without bias. I.e. even if there are al-
ready noise free areas, the engine will continue sampling
it to achieve a realist and physically accurate result.

Adaptive sampling in unbiased render engines expedites
the rendering process by constraining light calculations
based on the level of noise present in specific areas. This
feature has become powerful when improving rendering
time.

A noise threshold is established, and once this threshold
is crossed in part of the images (controlled by the group
pixel parameter: 2x2 or 4x4 pixels of area), the engine
understands that this section is noise-free. Consequent-
ly, it ceases further sampling in that area, directing the

available resources towards unfinished regions, thus
accelerating the calculations. A lower threshold means a
lower tolerance for noise in the analyzed area, resulting
in less noise.

Not every scene requires a high number of samples
to achieve a noise-free result. In such cases, consider
adjusting the minimum samples (min. samples) in the
adaptive sampling settings to a lower value. Otherwise,
there might not be a significant impact on the final render
time. The minimum sample setting dictates when the
engine should begin assessing if the image already has
noise-free areas based on the established threshold.

If areas of the image are already noise-free with just 16
casted samples, consider setting this value in the min.
samples setting.

Figure 45.	 Result comparison between different min. sample amount

40

The Figure 45 was used as reference for the following
analysis. The settings used were:

•	 350 Samples
•	 Diffuse Depth: 4
•	 Specular Depth: 4
•	 GI Clamp: 1

The standard value for the min. samples in the adaptive
sampling setting is 256. However, in the scene presented
in Figure 45, there were noise-free areas with 16 casted
samples. This means that until casting 256 samples,
every area of the image would be rendered without bias,
thus casting constant samples on every area of the image,
consequently spending more time rendering.

When adapting the setting to fit the correct value, a great
reduction in render time was provided while remai-
ning similar in terms of image noise. Furthermore, as
presented on the render logs (see Appendix A, Table 7),
there are no significant changes in hardware usage, only
in render time.

54,899

41,613

0,000 10,000 20,000 30,000 40,000 50,000 60,000

Re
nd

er
 T

im
e

(s
ec

)

Adaptive Sampling
Minimun Samples (Min. Samples)

Min. Samples 256 Min. Samples 16

Table 9.	 Graphical comparison of render time with different setting for min. samples (adaptive sampling)

Situation 01: Situation 02:

Adaptive Sampling Active:
•	 Noise Threshold: 0.06
•	 Min. Samples: 256 (standard value)
•	 Expected Exposure: 1
•	 Group Pixels: 2x2

Adaptive Sampling Active:
•	 Noise Threshold: 0.06
•	 Min. Samples: 16
•	 Expected Exposure: 1
•	 Group Pixels: 2x2

41

4.7.2	 Parallel Samples

Parallel samples can be configured to speed up rendering
at the cost of VRAM usage or to reduce memory usage
at the cost of render time. If memory is not the problem,
consider increasing the parallel sample to get the best
rendering speed.

Figure 46 was rendered with 32, 16, and 8 parallel
samples, all having the exact same visual outcome but,
according to the render logs (see Appendix A, Table
8), with a significant difference in render time and in
VRAM and RAM consumption. Those changes were
transcribed into charts, presenting a graphic visualization
of the rendering performance:

Figure 46.	 Analysed scene to compare the performance with different setting of parallel samples

11,862

47,086

10,695

42,420

10,055

38,962

0,000 10,000 20,000 30,000 40,000 50,000

VRAM (Gb)

RAM (Gb)

Resource Usage

32 Parallel Samples 16 Parallel Samples 08 Parallel Samples

159,365

174,261

206,610

0,000 50,000 100,000 150,000 200,000 250,000

Re
nd

er
-T

im
e

(s
eg

)

Render-Time

32 Parallel Samples 16 Parallel Samples 08 Parallel Samples

Table 10.	 Graphical comparison of rendering performance
with different setting of parallel samples

42

While GPU rendering is significantly faster than CPU
rendering, it comes with its own limitations. The most
crucial consideration is that the entire scene must be
loaded into the available memory of the graphics card.
Therefore, exceeding the VRAM on the GPU makes it
impossible to render the scene using all the potential of
the GPU, unless the hardware is upgraded with a graphic
card with enough video memory to run the scene.

Taking into consideration the rapid pace of GPU ad-
vancements, constantly upgrading the hardware is
cost-intensive and not always viable. As a result, not
every artist involved in a project operates with identical
system specifications, and GPUs with enormous amounts
of VRAM are not always available. Therefore, effective
resource management allows the project to run on a
wider range of systems, cutting expenses while avoiding
the need for constant upgrades. Additionally, stacking up
lower-grade GPUs can yield impressive performance at a
reduced cost, albeit constrained by their graphic memory.

The results presented in this study indicate that reducing
memory consumption leads to improved software perfor-
mance, as it reduces the need for data transfer between
GPU and system memory, possibly resulting in faster
rendering. In addition, it also avoids the risks of software
delays and crashes, performance bottlenecks, low-speed
processing or hardware overloads, thus speeding up the
production process and equipping the artists with more
time to further develop the project.

The process of optimizing a scene must become natural
in the workflow of a 3D artist, who, after reading this
paper, should have a better comprehension of which
techniques to use or avoid during the multiple steps of
production, endowing maximum performance on the
project.

This study demonstrates a correlation between scene
optimizations and the visual outcome. Being able to
foresee the possible visual advantages or problems each
technique can bring to the output image empowers the
artist with faster and more concise work, reducing the
need for constant trial-and-error or pointless renderings.

Each technique presented here is explained and assessed
within distinct scenarios. Yet, complex scenes require all
those techniques to be applied several times. Adding up
the results of each optimization in a complex scene can
lead to substantial improvements.

Multiple tools aimed at analyzing hardware consumption
were introduced in this paper. Those must be taken into

5.	Discussion

account during the optimization and troubleshooting
processes since they provide the artist with invaluable
insights on resource management, occasionally making
it possible to avoid the massive work of going through
every element of the scene searching for unclear ways to
improve the performance of the project.

•	 Frustum Culling
This paper introduced a frustum culling system for
Octane scatter implemented exclusively with native C4D
tools, which unlocks potential for future advancements,
including geometry culling and occlusion culling, to be
explored in subsequent studies.

The performance test results proved that the native
scatter system from Octane is highly optimized. Culling
the scattered geometry did not provide a great reduction
in VRAM usage; however, it provided improvements
on scene update time per frame when rendering and on
interface performance while the scatter system is active.
A further advantage of this technique is the gradual
reduction of VRAM usage according to the amount of
scatter culled from the scene. That said, when a resour-
ce-intensive scatter system gets out of the FoV, it is
deactivated from the calculations, further decreasing the
VRAM consumption and improving scene performance.

The developed frustum culling system can be independ-
ently activated on each scatter system, providing the user
with more control over the scene while allowing them to
choose what to cull and what to keep in the render. Thus,
when a single scatter system must remain active to avoid
visual failures, it is possible to deactivate the culling
effect only for this specific system.

Furthermore, the possibility of adding other static or an-
imated fields that are not influenced by the camera move-
ments makes it possible to cull further geometries from
the scene, increasing the overall control of the system.

Frustum culling completely removes the scattered
geometry from the scene and, therefore, can have major
impacts on the final visuals. Analyzing if the final visual
is still appropriate to the needs of the project is of major
importance.

•	 Bulk Texture Resize
Bulk resizing images is commonly used by photogra-
phers when generating previews of their picture shots in
RAW format. However, it is not commonly discussed in
the 3D artist community, and it can bring great results in
terms of memory savings for a project. Texture reso-
lution and its compression method impact the file size,

43

consequentially impacting the VRAM consumption.

Using external assets is a common practice on 3D projects;
however, the available textures in those assets are not al-
ways optimized for the project under development. High-
quality assets offer high-quality textures; however, if the
asset is not close to the camera, high resolution might not
be necessary, resulting in useless information being loaded
onto the graphic card. Therefore, being able to quickly
adapt image settings to fit best for the project‘s needs is of
major importance when optimizing memory consumption
of a 3D scene, resulting in optimized resource usage.

•	 VDB Topology Optimization
VDB geometry requires special attention from the artist
most of the time. Comprehending how those geometries
impact hardware usage and how possible optimizations
can affect the final visuals is of great importance. Volume
builder, the VDB tool in C4D, has become increasingly
popular among Cinema 4D users, whether for static or
animated geometries.

When working with static geometry, it is easier to find
ways to optimize it, and reducing the polycount would be
a first appropriate step. For that, available features such
as adaptive mesh, remesh, and polygon reduction are the
logical choice.

However, GPU renderers can process polygons very
quickly. Therefore, reducing the polycount of a mesh
does not necessarily reduce the render time, but it does
reduce VRAM consumption. However, it is important to
acknowledge that doing it with the automated features of
the software can introduce problems in the mesh being
post-worked, resulting in loss of details, drastic topology
changes, and, if not done properly, mesh failures, bringing
undesirable changes to the overall shape of the model and
affecting its visual on the output image. When the goal is
to keep the most details in a VDB model, using the dense
mesh is often the best way to go.

Yet there are major differences in the workflow when
working with animated VDB meshes:

•	 Retopology is not an optimal solution.
•	 Changing the dense mesh often introduces glit-

ches.

An animated and highly detailed VDB simulation is often
considered to be one of the main elements in a scene;
otherwise, the simulated geometry itself would be in lower
resolution, which consequently results in a less dense
mesh. Helpful for that is having a cached animation.

The results presented in this study indicate that trying
to reduce memory consumption while modifying the
topology of highly detailed VDB meshes can introduce
failures in important visual characteristics of that element.

Reflections, refractions, and fine details of the geometry
will be affected, producing glitches, wrong light reac-
tions, and diminishing the quality of the specific element
in the final image. If there is still a need to reduce the
polycount, consider reducing the resolution of the VDB
simulation itself.

The best choice when working with highly detailed VDB
meshes is to use the original mesh while coping with its
cons, therefore optimizing other elements of the scene.

•	 Instances
The proper use of instances in a scene is one of the most
important techniques presented in this paper. It is also
important to apply this technique from the beginning
of the project, during the construction steps. This will
provide the artist with higher software performance and
more control over multiple elements copied through
the scene. Choosing the correct instance mode can also
avoid overloads on hardware, system crashes, or slow
processing of the 3D scene.

The analysis of the instance modes proved to be of great
importance. Even with 24GB of VRAM available, it was
not possible to render the example scene when using the
wrong instance type in the cloner object. However, when
properly set up, it proved that the resources were just
being falsely allocated and that not much memory was
needed to achieve the desired result.

Since instances can have a major impact on VRAM, lear-
ning how to cope with the limitations of each instance
mode is an advantage for a 3D artist.

•	 Adaptive Sampling
The results indicate that adaptive sampling has no impact
on hardware usage, only on rendering time. This setting
is aimed at the rendering process and not the 3D scene
itself; however, it speeds up the interactive preview, all-
owing the artists to make faster decisions when working
on lights, shaders, and render.

•	 Parallel Samples
Parallel samples proved to be a powerful setting of the
render engine, but since it comes at the cost of VRAM
and RAM usage, it is directly related to the amount of
memory available; therefore, better-performing GPUs
have better chances of taking advantage of this feature to
speed up the rendering process.

Besides potentially accelerating the rendering process, it
can also serve as a lifesaver when the available memory
is insufficient for rendering the scene. Decreasing the
number of parallel samples may extend the rendering
time, but it could decrease memory consumption to a
level supported by the graphic card. Having enough
VRAM to take advantage of this setting brings a great
reduction in the rendering time per frame.

44

Better-performing GPUs come equipped with a larger
amount of memory; consequently, in addition to the
higher speed, they are better suited to take advantage of
this feature, reducing the render time even more.

Due to the lack of data from GPUs with less memory, the
results cannot confirm if this setting can provide system
instabilities. While running the tests on the RTX 4090,
there were no crashes or problems, even when increa-
sing the parallel samples to maximum. According to the
render logs, almost all the available RAM was used; the-
refore, the rendering speed might also have been limited.
Nonetheless providing a great improvement in render
time and no software crashes.

6.	Conclusion

This quantitative study sheds light on optimization
techniques for 3D scenes aimed at better allocating GPU
resources for faster rendering and workflow, a smoother
software experience, and better performance. Further-
more, analyzes the possible impacts each technique can
have on the final visual outcome of the project.

The significance of the findings presented here lies not
only in the specific context of Octane for Cinema 4D but
also in a broader applicability to scene optimizations and
GPU rendering. Techniques not commonly dissemina-
ted through the artist community, such as bulk resizing
textures and frustum culling Octane scatter systems
with native C4D tools were presented, analyzed, and
explained.

By a meticulous examination of the rendering pipeline
while using Octane Render for Cinema 4D, we identified
strategies and techniques to address challenges related to
memory constraints, rendering speed, and overall system
performance. Advancements in technology inherently
tie the pursuit of efficiency in GPU rendering, and this
work contributes to shaping this evolving landscape. The
findings here presented underscore the importance of
continuous development in rendering algorithms, GPU
architectures, and software optimizations to meet the
evolving demands of the creative and technical indus-
tries.

As moving forward, the lessons learned from this case
study serves as a catalyst for further exploration, innova-
tion, and the continual improvement of GPU rendering
methodologies.

In the ever-evolving world of rendering, render engine
developers are constantly coming up with new features
to improve results and speed up the rendering process.
Understanding the theoretical concepts of rendering
helps the creators and artists keep up to date with the
technology, finding faster solutions for 3D scene prob-
lems, and making informed decisions to achieve better
results in a more efficient way.

Understanding resource management is a crucial skill
for 3D artists. Having an optimized scene since the
beginning of a project ensures software stability and
optimal hardware performance, resulting in a smoother
software experience and avoiding crashes and system
bottlenecks. When the objective is time efficiency, these
enhancements accelerate the workflow, affording artists
more time to refine their work.

The exploration of enhancing rendering performance has
become increasingly pertinent in the context of ever-ex-
panding demands for high-quality visuals, especially in
industries such as film, advertisement, animation, and
architectural visualization.

It became evident during the development of the paper
that a nuanced approach to scene optimization is crucial
for balancing the trade-offs between speed and image
quality. The results of this research underscore the
importance of continuous innovation in rendering algo-
rithms and software optimizations to meet the evolving
demands of the creative and technical industries.

45

7.	 Asset List
Cinema 4D Asset Browser

•	 Hot Hatch - Model by Dosch Design: Part of
the collection Dosch 3D: Concept Cars 2011

•	 Sedan - Model by Dosch Design: Part of the
collection Dosch 3D: Concept Cars 2011

•	 SUV Small - Model by Dosch Design: Part of
the collection Dosch 3D: Concept Cars 2011

•	 Van - Original C4D Asset

Quixel Megascans: Models
•	 Areca Palm – shFjC
•	 Birch Tree Trunk - thxvdfjfa
•	 Brick Debri on Ground – vbnjcbdfw
•	 Common Fern - rhDso
•	 Green Herb - tbbpaier
•	 Huge Mossy Forest Cliff - vktudjsaw
•	 Lady Fern - wdvlditia
•	 Mossy Embankment - titfbczfa
•	 Mossy Forest Bouder - wfstcdnaw
•	 Mossy Wooden Log - rhfdj
•	 Nature Rock M - wdbncbl:
•	 Nordic Forest Rock Moss - xetlaff
•	 Rotten Tree Stump - wjzueccs
•	 Rusty Metal Barrel - tewscfuda
•	 Rusty Metal Barrel - vijnbjz
•	 Sidewalk Vegetation - rmskb
•	 Small Stones Pack - vdjkbfmiw
•	 Wild Grass – vlkhcbxia
•	 Wooden Pallet - vh1icei
•	 Yellow Archangel – wcwmcfvia

Quixel Megascans: Surfaces
•	 Mossy Ground – ukimchjew
•	 Mossy Ground - vjoefgo
•	 Mossy Wild Grass - vemnae1s

Poly Haven:
•	 Alps Field - HDRI by Mischok, Andreas -

https://polyhaven.com/a/alps_field
•	 Evening Road 01 - HDRI by Guest, Jarod &

Majboroda, Sergej -https://polyhaven.com/a/
evening_road_01_puresky

•	 Kiara 6 Afternoon - HDRI by Zaal, Greg -
https://polyhaven.com/a/kiara_6_afternoon

•	 Kloofendal Misty Morning Puresky - HDRI by
Zaal, Greg -https://polyhaven.com/a/kloofen-
dal_misty_morning_puresky

Florian Renaux:
Water Heightmap - heightmap2_water - https://www.
artstation.com/marketplace/p/voRqV/water-height-
map

BBC Sound Library:
Death‘s Head Hawk Moth (Acherontia Atropos) -
NHU05078054
Water - NHU05013029
Wind Atmosphere - NHU10217728

46

8.	References
Angle of View Calculator. (n.D). Calculator Academy. https://calculator.academy/angle-

of-view-calculator/
Benson, S. (2023, March 16). Resource Management—Instances. Help | OTOY.

https://help.otoy.com/hc/en-us/articles/13900681276571-Resource-Management-
Instances

Florenaux. (n.d.). Home [Youtube Channel]. Youtube. https://www.youtube.com/@
florenaux/

Mathematical Functions Manual (Classic): Cinema 4D C++ SDK. (n.d.). Maxon Deve-
lopers. https://developers.maxon.net/docs/Cinema4DCPPSDK/html/page_manu-
al_maths.html

Poly Haven. (n.d). Poly Haven. https://polyhaven.com/

Quixel Megascans. (n.d.). Quixel. https://quixel.com/megascans

Renaux, F. (n.d.). Water HeightMap | Artworks. ArtStation. https://www.artstation.com/
marketplace/p/voRqV/water-heightmap

SilverwingVFX. (n.d.) Home [Youtube Channel]. Youtube. https://www.youtube.com/@
SilverwingVFX

Vertical FOV Calculator. (n.d). Calculator Academy. https://calculator.academy/verti-
cal-fov-calculator/

47

9.	 Appendix A. Render Logs

This appendix consists of the full Octane render logs for each rendered image or frame, without filtering for analysis.

Reference Frame
FRAME:120 fps:24
 MB:0/0 ST/MOV:0/35 Nodes:91 Tris:123k Disp-
Tris:825k Hairs:0 Meshes:35
 Textures Grey8/16:17/0 Rgb32/64:21/1
VRAM used/free/max:3.84Gb/13.559Gb/23.988Gb Out-
of-core used:0Kb RAM used:17.765Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.002sec. updateTM=0.209sec.
renderTM:18.231sec. totalTM:18.443sec.
Tonemapping the all passes tm:41.638
Displaying passes in tm=28.434
Passes saved in:0.752sec.

Frustum Culling Active
FRAME:120 fps:24
 MB:0/0 ST/MOV:0/35 Nodes:96 Tris:245k Disp-
Tris:825k Hairs:0 Meshes:44k
 Textures Grey8/16:17/0 Rgb32/64:21/1
VRAM used/free/max:3.883Gb/13.513Gb/23.988Gb Out-
of-core used:0Kb RAM used:18.343Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.007sec. updateTM=0.604sec.
renderTM:36.56sec. totalTM:37.172sec.
Tonemapping the all passes tm:39.765
Displaying passes in tm=29.505
Passes saved in:0.841sec.

Frustum Culling Off
FRAME:120 fps:24
 MB:0/0 ST/MOV:0/35 Nodes:96 Tris:245k Disp-
Tris:825k Hairs:0 Meshes:165k
 Textures Grey8/16:17/0 Rgb32/64:21/1
VRAM used/free/max:3.94Gb/13.456Gb/23.988Gb Out-
of-core used:0Kb RAM used:18.503Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.004sec. updateTM=0.65sec.
renderTM:36.065sec. totalTM:36.72sec.
Tonemapping the all passes tm:40.036
Displaying passes in tm=29.814
Passes saved in:0.835sec.

Table 1.	 Full render logs of the analysed situations on a small-scale environment

48

Reference Frame
FRAME:100 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:91 Tris:132k Disp-
Tris:160k Hairs:0 Meshes:37
 Textures Grey8/16:18/0 Rgb32/64:21/0
VRAM used/free/max:2.882Gb/14.521Gb/23.988Gb Out-
of-core used:0Kb RAM used:14.237Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.003sec. updateTM=0.251sec.
renderTM:12.896sec. totalTM:13.152sec.
Tonemapping the all passes tm:41.348
Displaying passes in tm=0.018
Passes saved in:0.925sec.

Frustum Culling Active
FRAME:100 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:97 Tris:265k Disp-
Tris:160k Hairs:0 Meshes:118k
 Textures Grey8/16:18/0 Rgb32/64:21/0
VRAM used/free/max:2.961Gb/14.287Gb/23.988Gb Out-
of-core used:0Kb RAM used:19.602Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.014sec. updateTM=0.725sec.
renderTM:42.221sec. totalTM:42.961sec.
Tonemapping the all passes tm:41.629
Displaying passes in tm=29.539
Passes saved in:0.992sec.

Frustum Culling Off
FRAME:100 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:97 Tris:265k Disp-
Tris:160k Hairs:0 Meshes:469k
 Textures Grey8/16:18/0 Rgb32/64:21/0
VRAM used/free/max:3.1Gb/13.904Gb/23.988Gb Out-
of-core used:0Kb RAM used:15.581Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.02sec. updateTM=2.086sec.
renderTM:41.399sec. totalTM:43.508sec.
Tonemapping the all passes tm:39.81
Displaying passes in tm=30.147
Passes saved in:1.036sec.

Table 2.	 C4D render logs of the analysed situations on a large-scale environment

49

Culling the Vertex Map
FRAME:100 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:91 Tris:132k Disp-
Tris:160k Hairs:0 Meshes:37
 Textures Grey8/16:18/0 Rgb32/64:21/0
VRAM used/free/max:2.882Gb/14.521Gb/23.988Gb Out-
of-core used:0Kb RAM used:14.237Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.003sec. updateTM=0.251sec.
renderTM:12.896sec. totalTM:13.152sec.
Tonemapping the all passes tm:41.348
Displaying passes in tm=0.018
Passes saved in:0.925sec.

Culling with Plain Effector
FRAME:100 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:97 Tris:265k Disp-
Tris:160k Hairs:0 Meshes:118k
 Textures Grey8/16:18/0 Rgb32/64:21/0
VRAM used/free/max:2.961Gb/14.287Gb/23.988Gb Out-
of-core used:0Kb RAM used:19.602Gb total:47.839Gb
OpenGL free/total:0/0
mblurTM=0sec. createTM=0.014sec. updateTM=0.725sec.
renderTM:42.221sec. totalTM:42.961sec.
Tonemapping the all passes tm:41.629
Displaying passes in tm=29.539
Passes saved in:0.992sec.

Table 3.	 C4D render logs: comparing both frustum culling methods

50

Original Dense VDB Geometry
Export materials time= 146.555 ms
Collect objects time= 3.318 ms
Mesh creation time = 646.32 ms.
 MB:0/0 ST/MOV:0/3 Nodes:43 Tris:1.285m DispTris:0 Hairs:0 Meshes:6
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.161Gb/15.987Gb/23.988Gb Out-of-core used:0Kb RAM used:15.357Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:47.872sec. totalTM:52.62sec.
Tonemapping the all passes tm:299.8
Displaying passes in tm=447.667
Passes saved in:8.799sec.

Adapative Geometry
Export materials time= 201.783 ms
Collect objects time= 3.504 ms
Mesh creation time = 565.262 ms.
 MB:0/0 ST/MOV:0/3 Nodes:43 Tris:461k DispTris:0 Hairs:0 Meshes:6
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.034Gb/16.141Gb/23.988Gb Out-of-core used:0Kb RAM used:15.288Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:47.234sec. totalTM:51.402sec.
Tonemapping the all passes tm:305.167
Displaying passes in tm=449.032
Passes saved in:8.898sec.

Remeshed Geometry
Export materials time= 181.454 ms
Collect objects time= 3.467 ms
Mesh creation time = 599.819 ms.
 MB:0/0 ST/MOV:0/3 Nodes:43 Tris:218k DispTris:0 Hairs:0 Meshes:6
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.002Gb/16.159Gb/23.988Gb Out-of-core used:0Kb RAM used:15.244Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:47.186sec. totalTM:51.12sec.
Tonemapping the all passes tm:294.1
Displaying passes in tm=448.498
Passes saved in:8.971sec.

Remeshed Geometry + Original Dense VDB Fluid
Export materials time= 173.207 ms
Collect objects time= 4.106 ms
Mesh creation time = 713.042 ms.
 MB:0/0 ST/MOV:0/5 Nodes:49 Tris:1.742m DispTris:0 Hairs:0 Meshes:8
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.264Gb/15.891Gb/23.988Gb Out-of-core used:0Kb RAM used:17.585Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:122.013sec. totalTM:127.198sec.
Tonemapping the all passes tm:292.81
Displaying passes in tm=451.127
Passes saved in:10.49sec.

Remeshed Geometry + Adaptive Fluid
Export materials time= 188.882 ms
Collect objects time= 4.067 ms
Mesh creation time = 730.967 ms.
 MB:0/0 ST/MOV:0/5 Nodes:49 Tris:1.633m DispTris:0 Hairs:0 Meshes:8
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.245Gb/15.936Gb/23.988Gb Out-of-core used:0Kb RAM used:16.839Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:121.188sec. totalTM:126.283sec.
Tonemapping the all passes tm:354.364
Displaying passes in tm=449.506
Passes saved in:10.518sec.

Table 4.	 C4D render logs: Comparing rendering performance for each VDB geometry optimization

51

Remeshed Geometry + Remeshed Fluid
Export materials time= 187.215 ms
Collect objects time= 4.594 ms
Mesh creation time = 628.254 ms.
 MB:0/0 ST/MOV:0/5 Nodes:49 Tris:725k DispTris:0 Hairs:0 Meshes:8
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.086Gb/16.095Gb/23.988Gb Out-of-core used:0Kb RAM used:16.806Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:111.483sec. totalTM:115.585sec.
Tonemapping the all passes tm:298.325
Displaying passes in tm=448.697
Passes saved in:10.629sec.

Optimal Choise: Remeshed Geometry + Original Dense VDB Fluid
Export materials time= 173.207 ms
Collect objects time= 4.106 ms
Mesh creation time = 713.042 ms.
 MB:0/0 ST/MOV:0/5 Nodes:49 Tris:1.742m DispTris:0 Hairs:0 Meshes:8
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.264Gb/15.891Gb/23.988Gb Out-of-core used:0Kb RAM used:17.585Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:122.013sec. totalTM:127.198sec.
Tonemapping the all passes tm:292.81
Displaying passes in tm=451.127
Passes saved in:10.49sec.

Original Dense VDB Meshes
Export materials time= 146.314 ms
Collect objects time= 3.305 ms
Mesh creation time = 870.614 ms.
 MB:0/0 ST/MOV:0/5 Nodes:49 Tris:2.808m DispTris:0 Hairs:0 Meshes:8
 Textures Grey8/16:0/0 Rgb32/64:4/4
VRAM used/free/max:2.456Gb/15.727Gb/23.988Gb Out-of-core used:0Kb RAM used:19.137Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:123.307sec. totalTM:128.754sec.
Tonemapping the all passes tm:298.391
Displaying passes in tm=448.936
Passes saved in:10.381sec.

52

Adapted Parking Lot: Base for calculation
FRAME:1 fps:24
 MB:0/0 ST/MOV:0/196 Nodes:674 Tris:4.258m DispTris:0 Hairs:0 Meshes:55k
 Textures Grey8/16:9/0 Rgb32/64:12/1
VRAM used/free/max:3.673Gb/13.887Gb/23.988Gb Out-of-core used:0Kb RAM used:13.878Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0.092sec. updateTM=0.421sec. renderTM:44.595sec. totalTM:45.108sec.
Tonemapping the all passes tm:384.94
Displaying passes in tm=442.605
Passes saved in:5.813sec.

Adapted Parking Lot: Cloner in Instance Mode
FRAME:1 fps:24
 MB:0/0 ST/MOV:0/8296 Nodes:24974 Tris:52.731m DispTris:0 Hairs:0 Meshes:63k
 Textures Grey8/16:9/0 Rgb32/64:29/2
VRAM used/free/max:12.454Gb/3.578Gb/23.988Gb Out-of-core used:0Kb RAM used:32.227Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0.303sec. updateTM=0.624sec. renderTM:61.948sec. totalTM:60.262sec.
Tonemapping the all passes tm:381.46
Displaying passes in tm=449.206
Passes saved in:6.116sec.

Adapted Parking Lot: Cloner in Multi-Instance Mode
FRAME:1 fps:24
 MB:0/0 ST/MOV:0/899 Nodes:2785 Tris:12.94m DispTris:0 Hairs:0 Meshes:63k
 Textures Grey8/16:9/0 Rgb32/64:29/2
VRAM used/free/max:5.317Gb/12.004Gb/23.988Gb Out-of-core used:0Kb RAM used:17.042Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0.122sec. updateTM=0.667sec. renderTM:61.441sec. totalTM:62.231sec.
Tonemapping the all passes tm:382.708
Displaying passes in tm=446.399
Passes saved in:5.983sec.

Original Parking Lot: Cloner in Instance Mode
Please check render statistics to solve the problem.
 MB:0/0 ST/MOV:0/12389 Nodes:37246 Tris:78.818m DispTris:0 Hairs:0 Meshes:79k
OCT: MB:0/0 ST/MOV:0/12389 Nodes:37246 Tris:78.818m DispTris:0 Hairs:0 Meshes:79k
 Textures Grey8/16:10/0 Rgb32/64:30/2
OCT: Textures Grey8/16:10/0 Rgb32/64:30/2
VRAM used/free/max:16.549Gb/0Kb/23.988Gb
OCT:VRAM used/free/max:16.549Gb/0Kb/23.988Gb
Free VRAM is too low!
Try to decrease polygon counts and use out-of-core for textures.
Use ‚render instances‘ when it‘s possible.‘
OCT:Free VRAM is too low!
Try to decrease polygon counts and use out-of-core for textures.
Use ‚render instances‘ when it‘s possible.‘

Original Parking Lot: Cloner in Multi-Instance Mode
Export materials time= 2875.509 ms
Collect objects time= 21.419 ms
Mesh creation time = 2494.3 ms.
 MB:0/0 ST/MOV:0/1109 Nodes:3403 Tris:12.936m DispTris:0 Hairs:0 Meshes:79k
 Textures Grey8/16:10/0 Rgb32/64:30/2
VRAM used/free/max:4.735Gb/12.825Gb/23.988Gb Out-of-core used:0Kb RAM used:18.135Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:56.765sec. totalTM:83.999sec.
Tonemapping the all passes tm:286.555
Displaying passes in tm=298.347
Passes saved in:7.068sec.

Table 5.	 C4D render logs: Comparing rendering performance of instances and multi-instance in the original parking lot scene

Table 6.	 C4D render logs: Comparing rendering performance of instances and multi-instance in the adapted parking lot scene

53

32 Parallel Samples
Export materials time= 29647.054 ms
Collect objects time= 8.38 ms
Mesh creation time = 4839.058 ms.
 MB:0/0 ST/MOV:0/619 Nodes:1374 Tris:31.642m DispTris:3.62m Hairs:0 Meshes:271k
 Textures Grey8/16:43/0 Rgb32/64:76/2
VRAM used/free/max:11.862Gb/4.369Gb/23.988Gb Out-of-core used:0Kb RAM used:47.086Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:159.365sec. totalTM:242.075sec.
Tonemapping the all passes tm:423.68
Displaying passes in tm=542.833
Passes saved in:12.459sec.

16 Parallel Samples
Export materials time= 29957.576 ms
Collect objects time= 8.989 ms
Mesh creation time = 4844.885 ms.
 MB:0/0 ST/MOV:0/619 Nodes:1374 Tris:31.642m DispTris:3.62m Hairs:0 Meshes:271k
 Textures Grey8/16:43/0 Rgb32/64:76/2
VRAM used/free/max:10.695Gb/6.453Gb/23.988Gb Out-of-core used:0Kb RAM used:42.42Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:174.261sec. totalTM:241.64sec.
Tonemapping the all passes tm:417.085
Displaying passes in tm=537.048
Passes saved in:12.277sec.

08 Parallel Samples
Export materials time= 29874.547 ms
Collect objects time= 7.407 ms
Mesh creation time = 4960.322 ms.
 MB:0/0 ST/MOV:0/619 Nodes:1374 Tris:31.642m DispTris:3.62m Hairs:0 Meshes:271k
 Textures Grey8/16:43/0 Rgb32/64:76/2
VRAM used/free/max:10.055Gb/7.162Gb/23.988Gb Out-of-core used:0Kb RAM used:38.962Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0sec. updateTM=0sec. renderTM:206.61sec. totalTM:266.141sec.
Tonemapping the all passes tm:431.52
Displaying passes in tm=539.25
Passes saved in:12.389sec.

Adaptive Sampling: 256 Min. Samples
FRAME:45 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:97 Tris:265k DispTris:160k Hairs:0 Meshes:164k
 Textures Grey8/16:15/0 Rgb32/64:18/0
VRAM used/free/max:2.925Gb/14.815Gb/23.988Gb Out-of-core used:0Kb RAM used:17.306Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0.015sec. updateTM=1.199sec. renderTM:54.899sec. totalTM:56.115sec.
Tonemapping the all passes tm:41.718
Displaying passes in tm=28.528
Passes saved in:1.002sec.

Adaptive Sampling: 16 Min. Samples
FRAME:45 fps:24
 MB:0/0 ST/MOV:0/36 Nodes:97 Tris:265k DispTris:160k Hairs:0 Meshes:164k
 Textures Grey8/16:15/0 Rgb32/64:18/0
VRAM used/free/max:2.925Gb/14.812Gb/23.988Gb Out-of-core used:0Kb RAM used:17.347Gb to-
tal:47.839Gb OpenGL free/total:0/0
mblurTM=0sec. createTM=0.014sec. updateTM=1.131sec. renderTM:41.613sec. totalTM:42.76sec.
Tonemapping the all passes tm:42.524
Displaying passes in tm=29.439
Passes saved in:1.003sec.

Table 7.	 C4D render logs: Impact of min. samples of the adaptive sampling on render time

Table 8.	 C4D render logs: Impact of Parallel Samples setting on render time

54

55

	Table of Contents
	List of Tables
	List of Figures
	1.	Introduction
	2.	Literature Review
	3.	Methodology
	4.	Results
	4.1	Research Objectives
	4.2	Relation of GPU Renderers to Time Sensitive Productions
	4.2.1	Impact on Artists Workflow
	4.2.2	Impact of Faster Interactive Preview

	4.3	Scope and Limitation
	4.4	Aiming for the Hardware
	4.4.1	Hardware Limitations
	4.4.2	Hardware Strengths

	4.5	Accepting the Pain: Dealing with Hardware Limitations
	4.5.1	Level of Detail
	4.5.2	Culling Techniques
	4.5.3	Baking Lights into HDRI
	4.5.4	Instances and Batch
	4.5.5	Geometry Simplifications
	4.5.6	Texture Atlasing
	4.5.7	Texture Resolution
	4.5.8	Procedural Textures
	4.5.9	UV vs. Triplanar Texturing
	4.5.10	Caching

	4.6	Optimizing the 3D Scene: Collecting Data through Experimentation
	4.6.1	Gathering Render Information
	4.6.1.1	C4D Console
	4.6.1.2	Octane Device Setting
	4.6.1.3	Hardware Monitoring: MSI Afterburner
	4.6.1.4	C4D Render Log:

	4.6.2	Frustum Culling for Octane Scatter
	4.6.2.1	Building the Frustum Culling Area
	4.6.2.2	Troubleshooting
	4.6.2.3	Bringing the Frustum to Life
	4.6.2.4	Method one: Frustum Culling the Vertex Map
	4.6.2.5	Method two: Frustum Culling with Plain Effectors
	4.6.2.6	What are the Possible Problems when Frustum Culling?
	4.6.2.7	Frustum Culling: Performance Analysis
	4.6.2.8	Comparing Performance and Visual Outcomes of Both Methods

	4.6.3	Bulk Resizing Textures
	4.6.3.1	Setting Up Presets on Adobe Bridge
	4.6.3.2	Changing Multiple Textures at Once with Octane Texture Manager
	4.6.3.3	Analyzing the Results

	4.6.4	Model Optimization: Volume Builder / VDB Geometries
	4.6.4.1	Optimizing Static Geometries
	4.6.4.2	Special Situations – High Detailed Geometry
	4.6.4.3	Compairing the Final Scene
	4.6.4.4	Final Considerations

	4.6.5	Instance vs. Multi-Instance
	4.6.5.1	What are Instances?
	4.6.5.2	Performance Test with Instance Modes
	4.6.5.3	Adapted Scene for Analysis:

	4.7	Aiming for Speed: Engine Settings
	4.7.1	Adaptive Sampling
	4.7.2	Parallel Samples

	5.	Discussion
	6.	Conclusion
	7.	Asset List
	8.	References
	9.	Appendix A. Render Logs
	Selbstständigkeitserklärung

