Synergies between biocatalytic methanation of power-to-gas hydrogen and carbon dioxide from alcoholic fermentation

Marc P. Hoffarth, Timo Broeker, Verena Wolff, Carolin Mengedoth, Klaus Heikrodt, Jan Schneider Institute for Food Technology.NRW, Ostwestfalen-Lippe University of Applied Sciences, Germany Intelligent Energy Systems, Ostwestfalen-Lippe University of Applied Sciences, Germany

Hochschule Ostwestfalen-Lippe University of Applied Sciences

SPONSORED BY TH

Federal Ministry of Education and Research

Introduction

Fluctuating energy peaks caused by renewable sources solar and wind require technologies to store energy and to balance fluctuation. A possible storage technology is power-to-gas (P2G), where electric energy is converted to hydrogen by electrolysis. Because of the lack of an adequate hydrogen infrastructure in Germany this P2G-hydrogen can be converted with carbon dioxide into methane. CO_2 can be obtained by breweries, winegrowers or champagne producers with CO_2 excess from alcoholic fermentation.

Biorefinery cascade

Combination of three technologies, alcoholic fermentation, hydrothermal carbonization (HTC) and biocatalytic methanation, can lead to a CO_2 emission free biorefinery cascade. CO_2 from fermentation and HTC can be used to feed archaea and convert CO_2 into CH_4 . Biomass will be completely converted into fuels and water.

Tab. 1: Production of beer^{*}, wine, sparkling wine/champagne^{*} and bioethanol in Germany (2014) and resulting CO_2 emissions from fermentation (*data based on sales).

	Production (Germany)	CO ₂ production
Beer	$95600000{ m hl}{ m a}^{-1}$	$312000{ m ta^{-1}}$
Wine	$9202000{ m hla^{-1}}$	$69000\mathrm{ta^{-1}}$
Sparkling wine / Champagne	3174000 hl a $^{-1}$	$16000{ m ta^{-1}}$
Bioethanol	$726000{ m ta^{-1}}$	$693000{ m ta^{-1}}$
\sum		$1090000{ m ta^{-1}}$

Those 1090000 ta^{-1} CO₂ can be converted to about 400000 ta^{-1} CH₄ which are about **5.6 TW h** of storable energy.

Methanation of carbon dioxide and hydrogen

Following reaction equation shows the conversion of CO_2 and hydrogen to methane.

 $CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O(I) \qquad \Delta H_R = -165 \text{ kJ mol}^{-1}$

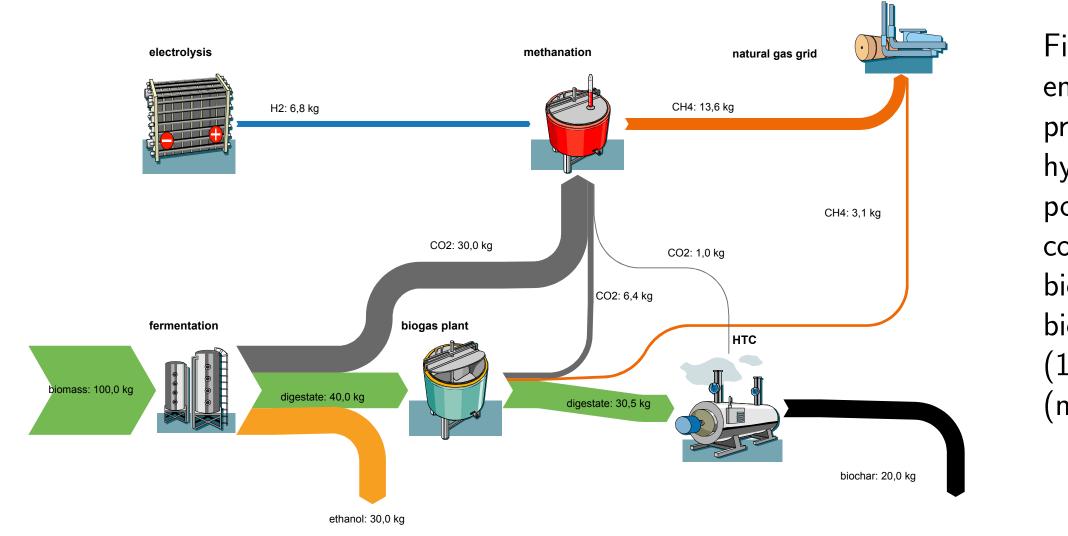


Fig. 2: Scheme of CO₂ emission free biorefinery process. Biomass and hydrogen from power-to-gas are converted to solid (20%)biochar), liquid (30%) bioethanol) and gaseous (16.7%) fuels plus water (not shown).

Experimental Approach

Except for a chemical methanation (Sabatier process) there are microorganisms (archaea) which metabolize CO_2 to CH_4 under anaerobic conditions. The advantages of this biological over chemical process are moderate process parameters.

Tab. 2: Process parameters of chemical and biological methanation.

Process	Temperature ϑ	Pressure p	needed quality of CO ₂ flow
chemical	400 °C	20 bar	high (catalysts)
biological	50 °C to 80 °C	$< 10 { m bar}$	low

German energy demand

Netto electricity exports of Germany were 35.5 TW h in 2014. This energy can be used for P2G to balance fluctutating energy production. This energy can be converted via electrolysis into 8.8 bn m^3 H_2 and afterwards via methanation into $2.2 \text{ bn m}^3 \text{ CH}_4$.

electricity exports = 74.4 TW h

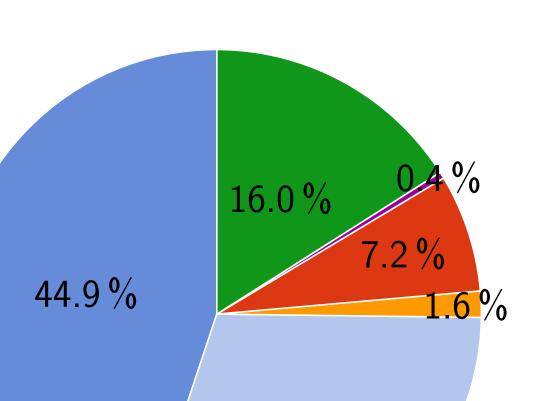


Fig. 3: Left: Methanation in lab scale (0.5 | bottles on hot plate magnetic stirrer) with pressure indication. Middle: Pilot plant scale reactor with magnetic stirrer and baffles. Right: Relative pressure in in lab scale bottles with and without stirring during biological methanation at 65 °C with *Methanothermobacter marburgensis*.

investigation of flexibility - start and stop behaviour

increase conversion rate by investigation of stirring kinetics

pilot scale plant with integrated bioethanol production

feasability for mid-scale brewery in Germany

Advantages of CO_2 form alcoholic fermentation

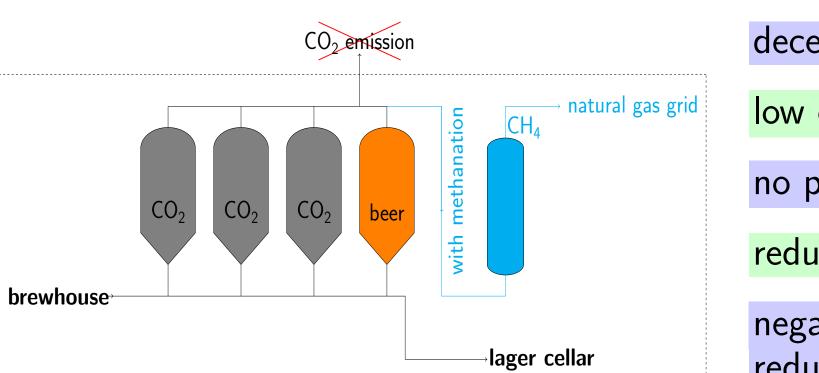


Fig. 4: Schematic fermentation cellar in a brewery

decentral conversion of energy low costs of CO_2 (side stream) no purification needed $(100\% CO_2)$ reduction of CO_2 emissions of breweries etc. negative CO₂ emissions (GHG emissions reduction potential)

electricity imports = 38.9 TW hnetto electricity exports = 35.5 TW h

Fig. 1 shows possible sources for methanation of $2.2 \text{ bn m}^3 \text{ CO}_2$. As shown about 1/4 of demanded CO₂ can be provided by alcoholic fermentation. About 30% can be obtained by biogas plants. Missing 44.9% must be obtained by other sources. This figure shows that Fig. 1: Different sources of CO_2 from alcoholic about one half of needed CO₂ is already avail- fermentation and their contribution to convert $2.2 \text{ bn m}^3 \text{ CO}_2$ to balance fluctuating electricity. able for methanation of 35.5 TW h electric en-Biogas information are based on the known sales in ergy excess. 2013.

29.9% Beer Bioethanol Biogas Wine Sparkling wine/ Other Champagne

with methanation reactor.

infrastructure (piping, vessels) already existent

References

[1] Federal Statistical Office. Absatz von Bier - Fachserie 14 Reihe 9.2.1 - July 2015, Wiesbaden, article no. 2140921151074 [2] Federal Statistical Office. Wein - Fachserie 3 Reihe 3.2.2 - 2014, Wiesbaden, article no. 2030322147004 [3] Federal Statistical Office. Schaumweinsteuer- und Zwischenerzeugnissteuerstatistik -Fachserie 14 Reihe 9.5 - 2014, Wiesbaden, article no. 2140950147004 [4] German Bioethanol Association. Marktdaten 2014, July 2015 [5] Federal Ministry for Economic Affairs and Energy. Energiedaten 2015, April 2015 [6] Federal Network Agency. Biogas- Monitoringbericht 2014, August 2014