Information Technology

Providing the Industrial Perspective on IT Master of Science (M.Sc.) www.it-master.org

Hochschule Ostwestfalen-Lippe University of Applied Sciences

Solution of the Entrance Test

!! STOP !!

Please try to find your own solution first

OK, please go ahead ...

Solution 1 Yes.

Solution 2 The final value of the integer variable "max" after the following statements contains the maximum value in the array:

```
int max = A[0]
for i = 1 to N-1
   if(max<A[i])max = A[i]</pre>
```

Solution 3 Variance = 1.19

Solution 4 $\nabla f = (2x, -2y)^T$

Solution 5 Input variable x, output variable y, time t:

- Additivity: $x_1(t) \rightarrow y_1(t)$, $x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t)$.
- Multiplication with a constant: $C \cdot x_1(t) \rightarrow C \cdot y_1(t)$.
- Time invariance: $x_1(t) \rightarrow y_1(t)$, $x_1(t-T) \rightarrow y_1(t-T)$.
- Convolution: $y(t) = \int_{-\infty}^{\infty} h(\tau) \cdot x(t-\tau) d\tau$: h(t) is the impulse response of a LTI system.

At least 3 items are desired for a "correct" answer!

Solution 6

$$z = \overline{\left(B + \overline{AB} + \overline{CD}\right)} = \overline{\left(B + \overline{A} + \overline{B} + \overline{CD}\right)} = \cdots$$
$$\cdots = \overline{\left((B + \overline{B}) + \overline{A} + \overline{CD}\right)} = \overline{\left(1 + \overline{A} + \overline{CD}\right)} = \overline{1} = 0.$$

Solution 7 The final value of the integer variable "sum" after the following statements contains the sum of all the values in the array:

```
int sum = 0

for i = 0 to N-1

sum = sum + A[i]
```

Solution 8 Right answer: B

Solution 9 Right answer: C

Solution 10 Possible answers: $i(t) = 4.24 \text{A} \cdot \cos(\omega t + 30^\circ)$; $i(t) = 3 \text{A} \cdot \cos(\omega t + 30^\circ)$

Solution 11

A FIR-Filter is a special type of a digital filter which reacts with a <u>finite impulse response</u>. An IIR-Filter is a special type of a digital filter with an <u>infinite impulse response</u>.

The z-system function can be expressed as $H(z) = \frac{\sum_{i} b_{i} \cdot z^{-i}}{\sum_{j} a_{j} \cdot z^{-j}} = \frac{D(z)}{N(z)}$

FIR-Filter: $D(z) \neq 0, N(z) = 1$. IIR-Filter: $D(z) \neq 0, N(z) \neq 1$.

Solution 12 The impulse response is a sinc function.

Solution 13 x + 1

Solution 14 500 kHz

Solution 15 A multiple of $\vec{u} = (1,-1)^T$ or $\vec{u} = (1,1)^T$

Solution 16 Answer: A, C, D

At least 2 items are desired for a "correct" answer!

Solution 17 Answer: "0"

Solution 18 At most 127.3 days or 22.6 hours, respectively.

Solution 19 Probability = 0.3061

Solution 20 Yes.