
From the Virtual to the Physical: The Gradual Transition
 to Pervasive Games

Carsten Magerkurth
Fraunhofer IPSI

AMBIENTE
Dolivostraße 15

64293 Darmstadt, Germany

magerkurth@ipsi.fhg.de

Carsten Röcker
Fraunhofer IPSI

AMBIENTE
Dolivostraße 15

64293 Darmstadt, Germany

roecker@ipsi.fhg.de

Timo Engelke
Fraunhofer IPSI

AMBIENTE
Dolivostraße 15

64293 Darmstadt, Germany

engelke@cs.brown.edu

ABSTRACT
In this paper, we present a component-based
architecture for developing pervasive games that can
flexibly integrate both graphical and tangible user
interfaces. It allows for gradually augmenting purely
virtual games with elements from the real world, thus
transferring computer entertainment to our physical
realities.

As a proof of concept, we have implemented a
tabletop role playing game called Caves & Creatures
that can be played with varying proportions of
physical and graphical interface components and will
provide a test bed for different interaction device
ensembles.

1. INTRODUCTION
Nowadays, most computer games are controlled via
graphical user interfaces with keyboards, joysticks or
mice as the only interaction devices. Due to the tight
coupling of these controllers with the graphical
representations of the games on the screen, the
interaction is usually focused on the display and
disregards properties of the physical and social
environments. Consequently, despite all technological
drawbacks, other types of games such as traditional
free form or board games have remained popular for
thousands of years, because they obviously satisfy
complementary needs such as the exertion of physical
activity or social, face-to-face interaction. These
properties are hard to realize via screen and keyboard
alone (Mandryk & Inkpen, 2002).
To make computer games attractive to a larger target
group that appreciates tangible game elements and
interaction metaphors from outside the domain of
computer games, novel physical gaming interfaces
have emerged. Examples include the physical
GameTrak boxing or baseball interfaces

(http://www.in2games.uk.com), the Playstation Eye-
Toy (http://www.eyetoy.com), or more recently the
controllers of the Nintendo Wii video game consoles
(http://wii.nintendo.com). The tremendous success
e.g. of the Eye-Toy (Minkley, 2003), a camera add-on
for the Sony Playstation that integrates the filmed
shape of the player as an action object in the
respective video games, is a clear indication that
dedicated physical interfaces involving real world
skills are an important future trend for entertainment
applications.
Within computer game research, there is a
complementary trend to augment traditional video
games with aspects from the real world (e.g. Benford
et al. 2005, Bjork et al. 2001, Cheok et al. 2002,
Magerkurth et al. 2005) by integrating pervasive
computing technologies. These hybrid or pervasive
games combine the virtual nature of traditional video
games with physical and social context, thus creating
immersive gaming experiences that pervade the
boundaries of virtual, physical and social domains.
While many of these pervasive games focus on
integrating entire buildings, streets, or even cities (e.g.
Flinham et al. 2003) into a hybrid gaming experience,
we address pervasive tabletop games that provide
tangible interfaces borrowing interaction techniques
from traditional board games. These pervasive board
games attempt to bring together the advantageous
elements of traditional tabletop games and computer
entertainment technologies. The former emphasize the
direct interaction between human players that face
each other at an intimate distance. The latter provide
rich audio and visual support, artificial intelligence,
and several other features (cf. Mandryk & Inkpen
2002).

Figure 1: A Pervasive Tabletop Game

Figure 1 shows such a pervasive tabletop game,
“Caves & Creatures”, that is discussed in a later
section of this paper.

2. DEVELOPMENT ISSUES
When it comes to the actual realization of pervasive
games, developers quickly find themselves faced with
new complexities in addition to the already complex
process of creating traditional computer games.
Creating pervasive games involves the integration of
physical, social, and virtual aspects to be taken into
account both at the game design and at the software
engineering level. What might work well for
traditional tabletop games (e.g. rolling dice for
variability in the game flow) might work very
differently in computer games (random number
generation without manual intervention). Also, certain
user interfaces that are designed for remote
multiplayer usage in computer games (e.g.
microphone input for voice commands) might totally
break the social situation of co-located tabletop
gaming.

Hence, for the development process of a pervasive
game, it is crucial to be able to quickly prototype and
tweak game mechanics as well as the involved user
interfaces and interaction devices. One of the most
important challenges for the development of pervasive
games is thus the provision of a flexible infrastructure
to dynamically integrate and replace various game
components so that a test bed and environment for
rapid prototyping can be realized.

In the following section, we outline our coordination
and communication infrastructure called Pegasus that

facilitates the development of pervasive games, before
we afterwards discuss our sample implementation of a
tabletop role playing game built upon Pegasus.

2.1 The Pegasus Infrastructure
The coordination and communication infrastructure
‘Pegasus’ provides the functionality to let
heterogeneous software components connected in an
ad-hoc manner share information and synchronize
distributed data objects. It is designed as a lightweight
communication solution which is capable of
integrating also resource-constrained devices such as
PDAs or custom interaction devices powered by
diverse operating systems and providing wired or
wireless communication protocols. The main design
considerations are briefly outlined before the actual
system architecture is presented.
Distribution and Dynamic Device Integration
Pegasus does not rely on a central server component,
but allows communicating entities to directly
exchange information. Physical interaction devices
and their corresponding software proxies can be
added and removed at any time with their state
information being synchronized over an anonymous,
decoupled communication bus. In the same way, the
application logic can be distributed among
communicating entities so that the disintegration of
any single central server component does not
necessarily have fatal consequences. Its highly
dynamic nature regarding the integration and
disintegration of communicating entities enables
experimentation with different device setups during
runtime.
Decoupled Communication
For the design of a distributed pervasive computing
coordination infrastructure, the choice of an
appropriate communication model is most crucial,
because of its implications for scalability and
flexibility. Pegasus consequently adheres to a publish/
subscribe interaction scheme in order to realize a
loose coupling of participating components.
Subscription Scheme
In order to save communication resources in a
publish/ subscribe system it is important to specify
which particular events a communicating entity is
interested in, so that subscribers do not have to
receive all events that are published. Due to the small-
scale nature of typical pervasive gaming applications
that involve only a limited number of communicating

entities, the overhead of sophisticated content-based
protocols is uncritical. Therefore, Pegasus follows a
content-based approach that allows filtering events
based on the evaluation of predicates that can be
dynamically altered during runtime. Events are stored
as distributed data trees / XML structures that are
hierarchically ordered, so that the communication
scheme of Pegasus can be seen as a combination of
hierarchical and content-based systems. Accordingly,
Pegasus introduces the notion of Functional Objects
that get triggered on freely configurable changes
within distributed data trees. A Functional Object
subscribes to an arbitrary tree or sub-tree and is
triggered on the evaluation of predicates that relate to
changes in the subscribed tree. This is explained in
more detail in the respective section of the system
architecture.

2.1.1 System Architecture
The Pegasus system architecture comprises
functionality on three layers of abstraction. These
include 1.) the Basic Tools Layer that provides low
level functions for dealing with data trees, network
transfer, and XML parsing, 2.) the Network Data
Layer that abstracts access to shared information via
Accessor objects and 3.) the Functional Object Layer
that provides various Functional Objects with
multiple event handlers.
The functionalities on each of the layers are now
discussed in more detail.

2.1.1.1 Basic Tools Layer
The Basic Tools Layer comprises various lightweight
XML-related library functions in which a document
class represents the data tree. There are several
methods for accessing the data structures via paths.
Furthermore, various network related functions for
establishing connections between multiple Pegasus
software components and transferring data between
them are provided at this layer. With only the Basic
Tools Layer available, we can already load a data tree
out of an XML file, establish a connection and
transmit parts of the data tree to another Pegasus
instance via different communication methods such as
a socket, a serial line, or a Bluetooth connection.

2.1.1.2 Network Data Layer
The second layer is the Network Data Layer. It is
responsible for the abstraction of access to shared
information across Pegasus instances. It defines
several classes of objects that closely work together.
The most important one is the Accessor object that is

capable of holding a tree structure either loaded from
a file or referenced from a part of a tree of another
Accessor. On a change of the referenced data, e.g.
from another Accessor instance, the Accessor receives
a notification. Similarly, the Accessor can inform
other objects of its own change. Accessors hence
provide the capability of representing and
synchronizing arbitrary data trees among distributed
software components based on Pegasus.
Another important class at the Network Data Layer is
the Gateway Accessor. It passes information from
published Accessors to a corresponding Gateway
inside a different Pegasus instance from which other
Accessors can access the corresponding data. Using
this mechanism, two or more instances can refer to the
same data, even when they reside on different devices
with different operating systems. As the Gateway
wraps the entire functionality of cross process data
transfer, adapters for various communication
protocols can be added by deriving from the Gateway
class. At the current point in time, connections via
TCP/IP sockets, represented by a TCP Server- and a
TCP Client Gateway are implemented as well as
Gateways for Bluetooth and serial communications.
Other connection types such as IrDA or HTTP are
trivial to integrate by deriving from the Gateway
class. By using Gateway Accessors, the idiosyncrasies
of specific transport protocols are mitigated.

2.1.1.3 Functional Object Layer
The third layer of the architecture is the actual
Functional Object Layer that implements the
aforementioned Functional Objects. Functional
Objects build upon the communication infrastructure
of the Accessors requiring only code for the
additional functionalities they provide. A Functional
Object augments the methods for data access and
synchronization that an Accessor provides. It can be
informed by other Functional Objects or Accessors of
data changes and can evaluate certain conditions in
respect to these changes. This can result in calling a
virtual Do()-method of the Functional Object class
(which is the actual interface between custom code
and the distributed application data) to which the
respective data is passed as parameters. The object
itself can change data, which in return can result in
"calling" actions on other objects, simply by changing
the data regarded by them.
Obviously, this Functional Object concept relates
closely to the object oriented programming approach.

Every object has its own data structures and certain
methods which can be called on different data
changes. The class definition is a hierarchic structure
that can be derived from. With this concept, we can
create networks of Functional Objects that react on
data changes appropriately for their defined situations.

2.1.2 Representation of User Interface Components
Each user interface component is represented by a
software proxy that uses a Functional Object to
synchronize with its respective data tree. The
connection and graceful disconnection of components
is handled by each component’s Gateway Accessor.
Since multiple Functional Objects can access a shared
branch of data and anonymously inform each other of
data changes, it is trivial to e.g. have a tangible game
board with an associated data tree and then start up a
graphical representation of the board that references
the same data tree.
Data changes in one of the components would inform
the other component of the respective changes and
trigger appropriate actions. In this specific example,
the Functional Object of the tangible game board
would, by default, reverse any incoming data changes
to enforce consistency with its own physical
representation, whereas the graphical game board
would accept any exterior data changes and update its
graphical representation. Due to the decoupled
communication scheme of Pegasus, an arbitrary
amount of similar user interface components can be
ad-hoc connected to a game application and
automatically keep synchronized without any central
coordination instance.

3. THE CAVES & CREATURES GAME
To demonstrate and explore the benefits of flexibly
integrating various interaction devices to a rather
complex pervasive gaming application, we have
developed a “Dungeons & Dragons” style tabletop
role laying game called “Caves & Creatures”. We
have chosen this type of game, because it offers the
chance to implement it with varying degrees of
pervasiveness.

The spectrum ranges from a traditional tabletop role
playing game without any computer support at all to a
purely virtual computer game that utilizes standard
graphical user interfaces, mice and keyboards
exclusively. In-between these extremes, it is possible
to replace traditional or GUI-components,
respectively, with novel user interfaces that retain the

interaction metaphors known from the real world (e.g.
shaking dice, using a magic wand), but that establish
the link to the virtual domain by being unobtrusively
augmented with sentient information technology.

3.1 Pervasive Computing User Interfaces
Examples for these interfaces include smart playing
cards, game pieces, a dice cup, and a magic wand. For
instance, the game integrates RFID augmented
playing cards that represent items, weapons, armor,
spells to be found, worn, used, cast, and traded
between players. A physical game board with RFID
augmented pieces can be used for positioning and
moving game characters. A smart dice cup
implements the rolling of dice and gestures performed
with a magic wand determine the success of magic
spells. The respective physical interfaces are briefly
discussed in the following sections.

3.1.1 Smart Playing Cards
Playing Cards (see figure 2) are common interaction
devices for many traditional games. In a computer
augmented version, they retain their interaction
properties. Due to RFID tags glued to the backs of the
cards, the event of being played is detected by a
stationary RFID reader.

Figure 2: Smart Playing Cards

While trading cards between players cannot be
detected by a computer application with one
stationary reader alone, the individual possession of
cards can easily be reflected in the virtual world by
utilizing multiple readers, possibly even integrated in
the clothing of the players or in augmented bracelets
(Smith et al. 2005).

3.1.2 Game Boards and Pieces
The interaction with physical game boards is a
prototypical example for spatial tangible user
interfaces (TUIS) that Ullmer & Ishii (2000) identify
as the primary TUI approach in which artifacts are
directly interpreted and augmented by a virtual
application, not involving any additional layer of
indirection.

Figure 3: Augmented Playing Pieces

Accordingly, a game board is a tangible interface that
seamlessly integrates representations and controls and
is thus preferable to graphical user interfaces in which
spatial relationships are controlled in a different way
(via the mouse) than they are represented. Figure 3
shows our tangible game board with RFID augmented
playing pieces on it. Depending on the availability of
such physical devices, the same game application
might also utilize a virtual (GUI-) version of this type
of interface.

3.1.3 The Smart Dice Cup
In order not to lose the physical and social aspects of
rolling dice by simply creating random numbers in a
computer application, we tried to preserve the multi-
faceted nature of dice-rolling in our pervasive
computing adaptation of rolling dice. Due to the size
and feasibility problems associated with augmenting
individual dice with respective sensor technology, we
integrated multiple dice into one single smart artifact,
the Smart Dice Cup (see fig. 4).

The augmentation of a dice cup allows for utilizing a
physical manipulation technique (shaking) that
influences the virtual outcome; a dice box is also a
well-known interaction device for games that players
are used to. Of course, a natural drawback of the

approach is that a dice box is not identical to rolling
physical dice and some players might not be used to
using a dice box, although with games requiring
multiple dice to be rolled simultaneously (such as
Yahtzee or several role-playing or tabletop conflict
games) it is common to use such a device, in fact,
most editions of Yahtzee are shipped with dice boxes.

Figure 4: The Smart Dice Cup

The interaction was designed to be as similar to a
traditional dice cup as possible. To generate random
numbers, the device is lifted, shaken, put on a plain
surface upside down, and then finally lifted again to
see the results. However, in contrast to traditional
dice, the sum of the spots is not counted from the
physical dice after being tossed on the surface of the
table. Instead, the spots are displayed via light
emitting diodes (LEDs) on the surface of the dice cup
top.

Shaking the device also emits a sound mimicking the
sound of shaking a traditional dice box, although the
integrated sound hardware does hardly deliver sound
of acceptable quality. Since the smart dice box is
capable of communicating with the environment via
radio transmission, it is more preferable to let another
sound source outside the device perform the
respective audio output.

3.1.4 The Magic Wand
Finally, the magic wand is an interaction device that
follows the approach of linking the exertion of a
physical skill to a respective effect in a virtual
application. It consists of a stick augmented with an
accelerometer in its head that can be swung in a
similar way as a conductor's baton or a magic wand
(ref. Ciger et al. 2003). It picks up and digitally

converts the radial movements of the stick to discrete
acceleration measures. There are three possible
operating modes of the device, each relating to
different usage scenarios and applications.

3.1.4.1 Gesture Recognition
The primary operating mode of the device is gesture
recognition (see also figure 1). In a typical pervasive
gaming application, the device translates and maps the
real world qualities of the user’s gestures to a virtual
representation that has a certain effect in the game.
The more accurate a player is able to perform a set of
given gestures, the more successful is his outcome in
the virtual world. Hence, a computer game wizard is
no longer mighty due to some numbers stored in her
character database, but because of physical skills
acquired by real experiences.

3.1.4.2 Intensity Measurement
The gesture recognition mode works by matching the
features of a set of stored gestures to the current
incoming stream of data from the device. Another
way of using the gesture based interaction device is
by regarding the magnitude of the raw sensor data in
order to measure the force of the swinging. By doing
so, it is possible to create pervasive games that use the
gesture based interaction device like a hammer or a
sword instead of a wand or a conductor’s baton.

3.1.4.3 Pointing
The final operating mode requires an RFID antenna
built into the device’s head. One can equip arbitrary
artifacts with RFID tags that can be read and
unambiguously identified by the antenna’s head. This
allows for unobtrusive multimodal interaction styles
that follow Bolt’s paradigm (Bolt 1980) by naturally
specifying source and/ or target artifact of an arbitrary
action.

For pervasive tabletop games that are in the domain of
role playing games (such as the Caves & Creatures
application), especially the capability of mapping the
real-world skill of operating the physical device with
the virtual effects of casting magic spells is an
interesting feature that showcases the interaction
between virtual and physical domains in pervasive
games.

3.2 Game Mechanics
Using the interaction devices described above or their
traditional virtual counterparts (from which some are
shown in figure 5), it is possible to play the game with

different degrees of pervasiveness. The actual game
play of “Caves & Creatures” closely resembles that
of the original “Dungeons & Dragons” tabletop
miniatures game including also the more sophisticated
rules for flanking or commander effects (cf.
www.wizards.com).

Figure 5: Some GUI Components of “Caves &

Creatures”

The advantage of the game’s architecture lies in the
complete decoupling of UI components from the
actual gaming applications. For instance, it is
irrelevant, if a physical game board as in figure 3, a
3D rendered display of the board (figure 5, top left
area), or a simple 2D GUI control (figure 5, bottom
right area) is used to control the movements of the
pieces. The latter two components can even be
executed multiple times and keep synchronized
automatically due to the anonymous Pegasus
communication bus.

This makes it possible to play the game with only
virtual UI components, with physical interaction
devices, or with a combination of both. Likewise, it is
technically indifferent, whether the game is played co-
located like a traditional tabletop or board game, or
whether the individual players (and their respective
user interface components) are distributed and
connected via the internet.

Table 1 recapitulates some of the game elements for
which alternatives exist regarding the integration as a
virtual or as a physical interface.

Table 1: Game Elements and their Interfaces

Game Element Virtual Interface Physical Interface

Moving and
Selecting Playing
Pieces

Graphical Game
Board

RFID augmented
Game Board

Readying
Equipment,
Weapons, & Armor

GUI application RFID augmented
playing cards

Generating
Variability

Random number
generator

Smart Dice Cup

Casting Spells Random Number
Generator

Magic Wand

Atmospheric
Display

Background sound
& music

Background sound
& music, room
illumination,
ambient displays

The atmospheric display in the last row of table 1 is
restricted to background sound and music in a virtual
realization, whereas in a typical pervasive computing
approach, the entire physical environment becomes
part of the game. In Caves & Creatures, the
illumination of the room (cf. the red glowing lamp
behind the player on the right in figure 1) can be
adapted to the current game situation as well as
ambient information being shown on the wall displays
in the room (see figure 1).

When we regard the multitude of possible game
realizations that involve different virtual and physical
interfaces and co-located and remote player
distributions, it becomes clear that the evaluation of
such a system is a complex task. So far, we have laid
the foundation for rapidly experimenting with
different setups. As a next step, we will conduct a user
study to find out which degree of pervasiveness is
most appreciated by the players and which game
elements should be realized in a specific way.
Ultimately, we hope to gain insights on the question,
if the diverse game genres of video games and
traditional tabletop games can really be united with
pervasive games, or if it finally turns out that most
players prefer either the traditional non-computer
realization or the purely virtual video game, but do
not make the transgression to pervasive games.

4. CONCLUSIONS
Pegasus, the component based architecture for
pervasive gaming applications allows for developing

pervasive games without anticipating exact
configurations of interaction devices. This reduces the
complexity of game development and opens up the
chance of experimenting with different
configurations.

As discussed in this paper, the sample game “Caves &
Creatures” can be played without any physical
interface components as well as with the specialized
devices we have developed such as the magic wand or
the Smart Dice Cup. This allows for systematic
evaluations of appropriate interface compositions and
game designs that we will conduct in the future.

5. RELATED WORK
There are several projects in the computer gaming
research community that address the integration of the
real and the virtual world. For instance, the academic
research project False Prophets (Mandryk & Inkpen
2002) is a pervasive board game, in which players
jointly explore a landscape on a physical game board.
A custom crafted infrared sensor interface helps
identifying the playing pieces, while the game board
is projected on the table. The realization of False
Prophets is similar to parts of our platform, even
though it is currently limited to a single exploration
game. In the same spirit, but technically more
constrained due to its very early realization in the
mid-nineties is also the Digital Playing Desk from
Rauterberg et al. (1996).
Bjork et al. (2001) presented a hybrid game system
called Pirates! that adds the world around us to
gaming applications with players moving in the
physical domain and experiencing location dependent
mini-games on mobile computers. Thereby, Pirates!
follows a very interesting approach to integrate virtual
and physical components in game applications.
Unfortunately, the mini-games on the PDAs do not
involve multiple players, so that social aspects are not
very relevant for Pirates!
From the domain of augmented reality are the works
of Cheok et al. (2002). These augmented reality
approaches involve the use of cameras and specialized
AR glasses that project digital information over the
standard camera images. The results create visually
stunning hybrid words that involve tangible and
artifacts and digital augmentations. The drawback,
however, is that AR glasses need to be worn that
might hamper social interaction, because players lose
direct eye contact. Flintham et al. (2003) present a

large scale game played on the real streets that also
integrates players connected via the internet hence
also pervading multiple realities.
Details on several other pervasive gaming projects
can also be gained from a recent overview article
(Magerkurth et al. 2005).

6. ACKNOWLEDGMENTS
We thank all our colleagues and friends at Fraunhofer
IPSI for revising earlier versions of this paper.

7. REFERENCES
Benford, S., Magerkurth, C., Ljungstrand, P. (2005)
Bridging the Physical and Digital in Pervasive
Gaming. In Communications of the ACM, March
2005, vol. 48. No. 3. Pages 54-57.
Bolt, R. A. (1980). “Put-that-there”: Voice and
gesture at the graphics interface. In Proceedings of
SIGGRAPH '80. ACM Press, New York, NY, 262-
270.
Bjork, S., Falk, J., Hansson, R., and Ljungstrand, P.
Pirates! using the physical world as a game board. In
Proceedings of Interact 2001, 2001.
Cheok, A. D., Yang, X., Ying, Z. Z., Billinghurst, M.,
Kato, H. (2002) Touch-Space: Mixed Reality Game
Space Based on Ubiquitous, Tangible, and Social
Computing. In Personal and Ubiquitous Computing
(2002), 6: 430-442.
Ciger, J., Gutierrez, M., Vexo, F., Thalmann, D.
(2003). The magic wand. 19th Spring Conference on
Computer Graphics (Budmerice, Slovakia, April 24 -
26, 2003). L. Szirmay-Kalos, Ed. SCCG '03. ACM
Press, New York, NY, 119-124.
Flintham, M., Anastasi, R., Benford, S., Drozd, A.,
Mathrick, J., Rowland, D., Oldroyd, A., Sutton, J.,

Tandavanitj, N., Adams, M., Row-Farr, J. (2003)
Uncle Roy All Around You. Level Up conference,
Utrecht, Nederlands, 2003.
Floerkemeier, C., Mattern, F. (2006). Smart Playing
Cards – Enhancing the Gaming Experience with
RFID, www.pergames.de
Mandryk, R., Inkpen, K. False prophets: Exploring
hybrid board/video games. In Extended Proceedings
of CHI 2002, pages 640–641. ACM Press, 2002.
Magerkurth, C., Cheok, A.D., Mandryk, R.L., Nilsen,
T. (2005): Pervasive Games. In: ACM Computers in
Entertainment, Vol. 3, No. 3, July 2005.
Magerkurth, C., Engelke, T., Memisoglu, M. (2004)
Augmenting the Virtual Domain with Physical and
Social Elements. In ACM Computers in
Entertainment, Vol. 2, No. 4, October 2004.
Minkley, J. (2003). Eyetoy shifts a million. Online
article at Computer and Video Games Market.
http://www.computerandvideogames.com/news/news
_story.php(que)id=97876
Rauterberg, M., Mauch, T., Stebler, R. (1996). The
Digital Playing Desk: a Case Study for Augmented
Reality. 5th IEEE Workshop on Robot and Human
Communication, Tsukuba, Japan, 410-415.
Smith, J. R., Fishkin, K. P., Jiang, B., Mamishev, A.,
Philipose, M., Rea, A. D., Roy, S., and Sundara-
Rajan, K. 2005. RFID-based techniques for human-
activity detection. Commun. ACM 48, 9 (Sep. 2005),
39-44.
Ullmer, B., Ishii, H. (2000). Emerging frameworks for
tangible user interfaces. IBM Systems Journal,
39(3):915–931.

