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Abstract. A major challenge in modern data-centric medicine is the increasing 
amount of time-dependent data, which requires efficient user-friendly solutions 
for dealing with such data. To create an effective and efficient knowledge dis-
covery process, it is important to support common data manipulation tasks by 
creating quick, responsive and intuitive interaction methods. In this paper we 
describe some methods for interactive longitudinal data visualization with focus 
on the usage of mobile multi-touch devices as interaction medium, based on our 
design and development experiences. We argue that when it comes to longitu-
dinal data this device category offers remarkable additional interaction benefits 
compared to standard point-and-click desktop computer devices. An important 
advantage of multi-touch devices arises when interacting with particularly large 
longitudinal data sets: Complex, coupled interactions such as zooming into a 
region and scrolling around almost simultaneously is more easily achieved with 
the possibilities of a multi-touch device than compared to a regular mouse-
based interaction device. 
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Mobile Computing. 

1 Introduction and Motivation for Research 

One of the grand challenges in modern data-centric medicine is dealing with large, 
complex, heterogeneous and weakly structured data sets and large amounts of un-
structured information. This calls for new, efficient and user-friendly solutions for 
handling such data – with raising expectations of end-users. Traditional approaches 
for data handling often cannot keep pace with demand, also increasing the risk of 
delivering unsatisfactory results. Consequently, to cope with this rising flood of data, 
new user-centered approaches are vital [1-4].  

Particularly, the advent of mobile devices and ubiquitous smart sensors has led  
to an ongoing trend to record all sort of personal biomedical data over time [5, 6]. 
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These recordings lead to a growing amount of so-called longitudinal data, in the engi-
neering domain maybe better known as time series data [7]. 

 
A major challenge is how to deal with such time-dependent data, and not only to 

deal with it, but to discover knowledge from it.  
Generally, there are two different ways to accomplish such tasks:  
1) Applying mathematical models for description and prediction purposes [8, 9]; or 
2) Using visual inspection to generate general assertions in regard to the properties 

of the underlying data set.  
 
For the second kind of knowledge discovery, interactive data visualization plays an 

important role. As stated by Tufte (1983) [10], graphical representations of data sets 
are instruments for reasoning about quantitative information. A recent example for 
such analysis and sensemaking of complex biomedical data can be found in [11]. 
Therefore, often the most effective way to summarize a large set of quantitative in-
formation is to look at “pictures” of these numbers. However, during this visual in-
formation seeking process it is often necessary to interact with the displayed data: It 
is important to include the human expert into the data exploration process, and to 
combine the flexibility, creativity, general knowledge and pattern recognition abilities 
(in low dimensions) of the human with the enormous capacity, analytical power, and 
pattern recognition abilities (in high dimensions) of computer solutions.  

A recent scientific approach is in combining the best of these two worlds [12] and 
a concrete topic is interactive visual data mining (VDM) [13, 14], which aims to inte-
grate the human expert into the whole data exploration process and to effectively 
represent data visually, so to benefit from the human perceptual abilities and allowing 
the expert to get insight into the data by direct interaction with the data [15].  
VDM can be particularly helpful when little is known about the data sets and/or the 
exploration goals are ill-defined or evolve over time [16]. The aspect of “time” in data 
visualization is generally most underrepresented in such approaches, yet, it is of vital 
importance, particularly in dealing with biomedical data [17]. 

Thereby, common tasks include: zooming into a portion of the overall data, chang-
ing the reference scale, comparisons with other data points and getting detailed, un-
derlying information on some specific data points. 

2 Theory and Background 

2.1 Longitudinal Data 

Longitudinal data (or time series data) arises when a certain random variable is rec-
orded as a sequence over time, whereas the measurement of some characteristics at 
(roughly) one single point in time is called cross-section data. For a general introduc-
tion into time series data refer to [18-23]. 

Depending on the measurement, differentiated distinction can be drawn between 
discrete and continuous time series.  
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A discrete time series is one in which the set T0 of times at which observations are 
made is a discrete set.  

On the other hand, if observations are recorded continuously over a time interval, 
e.g. T0 = [0,1] a continuous time series arises [24]. In contrast to analog recording, the 
process of digital recording is inevitably connected to a discrete sample frequency. 
Therefore, strictly speaking, although the lag between two measurements may be in 
the magnitude of milliseconds, we always have discrete time series data in the elec-
tronic data processing domain.  

The same is true for the recorded value. To be exact, we always record discrete  
variable values. Nevertheless, the underlying natures of, for instance, height, blood 
pressure, or weight of a person, are examples for continuous variables, whereas the 
number of patient visits on one day is an example for discrete ones. For continuous 
values it is therefore important to choose a recording sampling frequency that draws 
an adequate picture of the underlying process.  

Furthermore, for discrete time series, we can differentiate between evenly and un-
evenly spaced time series. Evenly spaced time series have constant time intervals 
between measurement points, whereas time intervals for unevenly spaced series can 
vary over time. Unevenly spaced time series are also called event-based time series 
[25], while evenly spaced series are called time-based records. 

Most of the long-term clinical longitudinal data falls in the category of discrete, 
unevenly spaced longitudinal data, as time intervals between medical checkups may 
vary in most of the cases [26].  

An additional distinction regarding the recorded values can be made into qualita-
tive and quantitative data.  

Quantitative data is always numerical. It arises when certain characteristics are 
measured or counted. The number of patients in an ambulance is quantitative data, 
since it involves a count of the number of patients. Equally, the blood pressure of a 
patient is quantitative data, since the answer involves measuring the blood pressure.  

Qualitative data is information that ranks or labels items, but does not measure or 
count them. For instance, if information about the drug name that is used for medica-
tion in a certain therapy is collected from patients, that data would be qualitative. If 
patients are asked during a medical checkup, whether they feel “very well”, “‘well”, 
“average”, “bad” or “very bad”, their subjective health status is converted into a rank-
ing. Therefore, qualitative data is generated also in this case.  

Furthermore, depending on the recorded variable, measured values can be assigned 
to different type classes, namely nominal, ordinal, interval or ratio [27]. Thereby, the 
type defines the recorded data’s level of structure. In general, qualitative data is either 
nominal or ordinal, whereas quantitative data is either interval or ratio data.  

Nominal data is the type with the least structure. Its values are simple labels that 
cannot be ordered or ranked in a meaningful way. The name of the drugs given to 
several patients would be such kind of data.  

In contrast, ordinal data can be ordered or ranked, but does not measure or count 
any data characteristics. Questions about, e.g. the subjective health status or satisfac-
tion level, generally involve a ranking.  
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Interval data does measure or count any characteristics, but ratios between two 
measured values have no intrinsic meaning. This applies for measurement scales, 
where the zero point does not describe a state of absence of a quantity (e.g. the abso-
lute lowest value on a scale). Temperature measuring in degrees of Fahrenheit is an 
example of interval data.  

Ratio data means that ratios between two measurement points have an intrinsic 
meaning. For instance, if one patient has a dosage of 400 mg and another patient a 
drug dosage of 200 mg, the former has a dosage that is twice as high as the second 
one. 

Longitudinal data can also be classified by the number of independent quantities 
that are recorded for each observation. If a physician examines a patient and  
only records the heart rate, the data has just one independent quantity and is called 
univariate. On the other hand, data that involves more than one variable, is called 
multivariate. In special cases, when exactly two variables are measured, the data is 
called bivariate. 

With regard to predictability of a time series we differentiate between deterministic 
and stochastic time series. If a time series can be predicted precisely, it is considered 
deterministic (e.g. if we look at the sinus wave). However, most of the time series fall 
in the category of stochastic time series [28]. Thereby, future events are only partly 
determined by past behavior and exact predictions are thus impossible and must be 
replaced by the idea that future values have a probability distribution that is condi-
tioned by the knowledge of past values [21]. 

A time series is called strictly stationary, if the joint probability distribution does 
not change when shifted in time, i.e. ௧ܲభ,…௧೙ሺݔଵ, … , ௡ሻݔ ൌ ௧ܲభశ೎,…௧೙శ೎ሺݔଵା௖, … ,   .௡ା௖ሻݔ

A time series is called weakly stationary if ॱሺݔ௧ሻ ൌ   and for the autocovariances ߤ
 ॱሾሺݔ௧ െ ௧ି௖ݔሻሺߤ െ ሻሿߤ ൌ ,  ௜ߛ ܿ ൌ 0, േ1, േ2, … 
 
This means, that the parameter mean and variance do not change over time, or fol-

low any trends. 
Insight can be gained from visualizations or from the hypothesis itself. This leads 

to the question: “What is interesting?” [29]. Closely connected is the approach of 
attention routing [30] to overcome one critical problem in visual analytics: to help end 
users locate good starting points for analysis. This may be achieved by application of 
longitudinal data visualization methods as described now. 

3 Longitudinal Data Visualization 

Nowadays, the most common visualization techniques for longitudinal data include 
point charts, bar charts, line graphs, sequence graphs and circle graphs [31]. For a 
general overview on visualization techniques refer to [32] and an excellent work on 
the visualization of time-oriented data is [33]. In the following paragraphs, longitu-
dinal data visualization techniques are briefly introduced.  
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Sequence graphs represent time-dependent data on one dimension by indicating each 
data point with a mark on the axis. The distance between each mark on the axis 
represents the time span passing between the events. With sequence charts, it is not 
possible to visualize a second dimension for a data point.  

Figure 1 shows a sequence graph. In this example the graph visualizes treatment 
frequency information.  

 

 

Fig. 1. - Sequence graph 

This mode of presentation allows an easy recognition of treatment pilings and 
longer time frames without treatment. Nevertheless, it is not possible to add additional 
information, like a dosage quantity related to the treatment, to this visualization. 

Therefore, point graphs extend sequence charts by using a second axis to display a 
further information dimension. The distance from the main axis thereby represents the 
second data dimension. Figure 2 shows a point chart. In this example the point chart 
visualizes treatment frequency and quantity information. 

 

 

Fig. 2. - Point graph 

The vertical distance to the origin represents the quantity information, whereas the 
horizontal distance to the origin stands for the elapsed time. Point charts are useful to 
detect pilings within two-dimensional data. 

 

Bar graphs replace the points with bars, which increases the comparability be-
tween the data points. Figure 3 shows the same information as represented in Figure 
2, visualized as a bar chart. A comparison of these two visualizations shows that the 
ability to compare data point quantities is enhanced by using bar charts.  

 



 Towards Interactive Visualization of Longitudinal Data to Support Knowledge Discovery 129 

 

Fig. 3. - Bar graph 

Line graphs extend point charts by connecting the dots with lines to emphasize the 
temporal aspect of data. Line charts are very helpful for indicating trends over time.  

 

 

Fig. 4. - Line graph 

According to Tufte [10], time series graphics are most suitable for big, complex 
data sets with real variability. Simple linear changes should better be summarized 
with one or two numbers. Tufte also introduced the following common guidelines that 
should be considered within every graphical display task: 

 

• show the data 
• induce the viewer to think about the substance, rather than about methodolo-

gy, graphic design, the technology of graphic production, or something else 
• avoid distorting what the data should express 
• present many numbers in a small space 
• make large data sets coherent 
• encourage the eye to compare different pieces of data 
• reveal the data at several levels of detail – from broad overview to fine structure 
• serve a reasonably clear purpose: description, exploration, tabulation, or de-

coration. 
• be closely integrated with the statistical and verbal descriptions of the data set. 
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Figure 7 shows a box plot visualization. Box plots [38] can provide information 
about the basic distribution properties of the data. The bottom and top of the box are 
first and third quartiles, and the band inside the box is the median. The ends of the 
lines, extending the box, are called whiskers. They can represent several possible 
alternative values. In this example, they stand for the minimum and maximum of the 
data set. 

4 Longitudinal Data Interaction 

As already emphasized in the introduction, besides choosing the right data-
visualization it is also important to offer the user the possibility to interact with the 
displayed data in manifold ways. Especially within large-scale graphs, this interaction 
capability allows to see the overall picture but also to focus on interesting details. 

According to Weber et al. (2001) [31], the following interaction methods can en-
hance the information perception process with the mentioned graph types. 

• Zooming – initially, a high level overview of the course of the time series is 
given. By zooming, the user can obtain a more detailed view on a subarea of 
interest. 

• Scrolling – if the area of display is not large enough to fit the whole chart 
(e.g. after zooming in), the user can scroll through areas. 

• Focusing and linking – extends the idea of zooming by providing not only a 
zoomed-in version of the data, but also applying different, more effective vi-
sualization techniques to the zoomed-in dataset. 

• Brushing – provides the idea of extended data visualization by automatically 
displaying pop-ups as a roll-over effect. 

• Filtering – taking away (ignoring) irrelevant data objects.  
 
When it comes to implementing these interaction methods, touch input has advan-

tages compared to traditional point-and-click interfaces. This result from the fact that 
compared to mouse-based devices multi-touch devices provides a greater richness of 
interaction possibilities. Richness of interaction refers in this case to the degrees of 
freedom in interaction supported by the technology [39], [40]. Conventional mouse-
based interfaces (the WIMP – Windows Icons Menu Pointers) rely heavily on a single 
2D-cursor, which results in 2 degrees of freedom (not counting the state of the mouse-
button). Sensing multiple fingers on a multi-touch display, however, results in a mul-
tiplication of the degrees of freedom. This fact allows the UI designer to encapsulate 
the various graph interaction methods into easy to learn and quickly executable ges-
tural commandos.  

Moreover, multiple tests with end users have yielded the confirmed result that 
complex mouse tasks, such as rotating an object and scaling, are faster done with 
multi-touch than with mouse-based devices [41]. Furthermore, well-designed gestural 
interfaces can shorten the learning curve by replacing a maze of menus and controls 
with simple actions, gestures, affordances and feedback [42]. Precondition to capture 
the benefits of the greater degree of freedom in interaction is a set of established  
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into the visualization approach. As stated by Widgor & Wixon, 2011 [42] a good user 
interface should be tailored to device properties and should take use of as much input 
information as possible. 

5 Open Problems 

Some open problems which we discovered during our work include: 
 

• How to select the appropriate axis parameters? This is maybe the grand 
major challenge when dealing with interactive visualizations of longitu-
dinal data sets. 

• How to deal with missing data sets? Uncertainty is another crucial issue, 
particular in the medical domain. 

• With the increasing amount of data we also have to find solutions for sca-
lability and platform issues, especially when dealing with big data analy-
sis on mobile devices. 

• Another issue to name is dealing with high-dimensional longitudinal data. 
• Combining the visualization of changes over time as well as showing 

trends, predictions and correlations is an open problem, too. 
• A further open problem is to find methods for choosing optimal data reso-

lutions (sampling frequencies) for the recording process as well as for the 
visualization step. The resolution should be chosen in dependence of the 
anticipated data variability and the expected cycle length of patterns with-
in the set. 

• Furthermore, it must be discussed how to handle changing visualization 
resolutions when continuously zooming in or out. Especially, methods for 
merging multiple data points into one. 

• Bridging the gap between mathematical analyzing and visual inspection of 
longitudinal datasets is another issue, more concise: Create a user inter-
face, which supports end users to utilize visual information for adjusting 
model parameters. 

6 Conclusion and Future Work 

Dealing with large longitudinal data sets is a hot and promising topic and the applica-
tion of advanced multi-touch interaction, e.g. graph-based interactions [43] are a  
starting point for a number of unsolved problems, particularly in the visualization of 
complex, multidimensional and multivariate data sets, e.g. in summarizing and show-
ing statistics and correlation of specific time sections; to get more insight into the 
applicability of such approaches in the real-world, some work on information percep-
tion would also be needed, e.g. to answer the question on what is a meaningful maxi-
mum number of simultaneously displayed plots for comparison purposes. 
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