SLM Solutions

Former: HEK GmbH MCP HEK Tooling GmbH MTT Technologies GmbH Roggenhorster Straße 9c D-23556 Lübeck +49 (0) 451 16082 – 0 www.slm-solutions.com

JUBILÄUMSVERANSTALTUNG 20. FACHTAGUNG RAPID PROTOTYPING 06. November 2015 Hochschule OWL, Lemgo

Selective Laser Melting Eine produktive Fertigungstechnologie Automatisierung Qualitätssicherung

Dr. Dieter Schwarze

SLM[®] is a registered trademark of SLM Solutions GmbH

SLM Solutions

2013

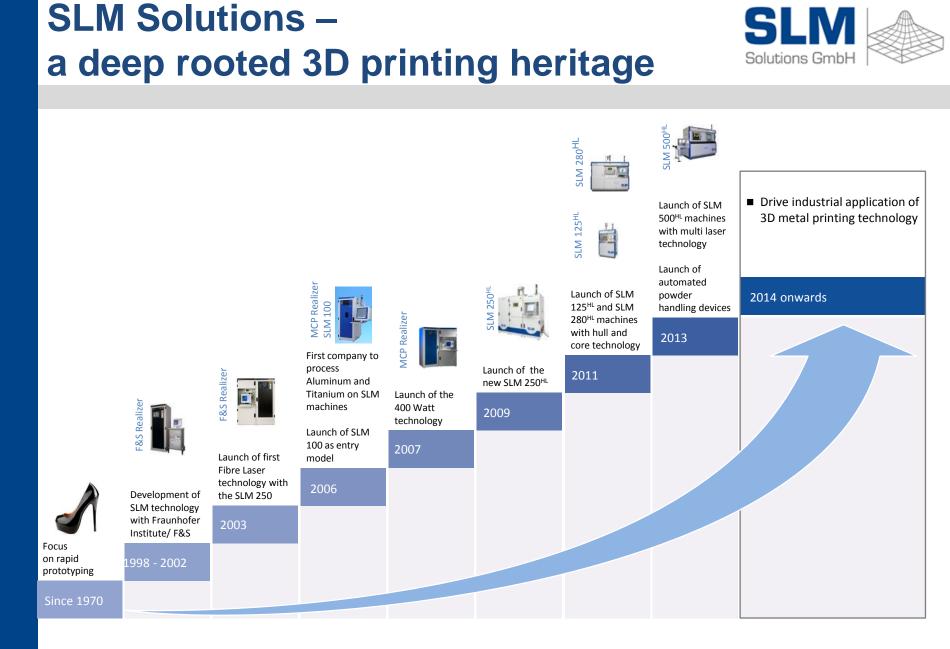
- DPE invests in SLM Solutions
- Production capacity enlarged to approx. 1000 m²
- 79 employees by 31.12.2013

2014

May 9
IPO of SLM Solutions Group AG
150 employees by 31.12.2014
> 220 employees by 30.09.2015

Real Pioneers / Real History

1993 – 1994 EU Project BRE20216 "Rapid prototyping metal components" Krupp Forschungsinstitut GmbH, Prof. J. Peterseim

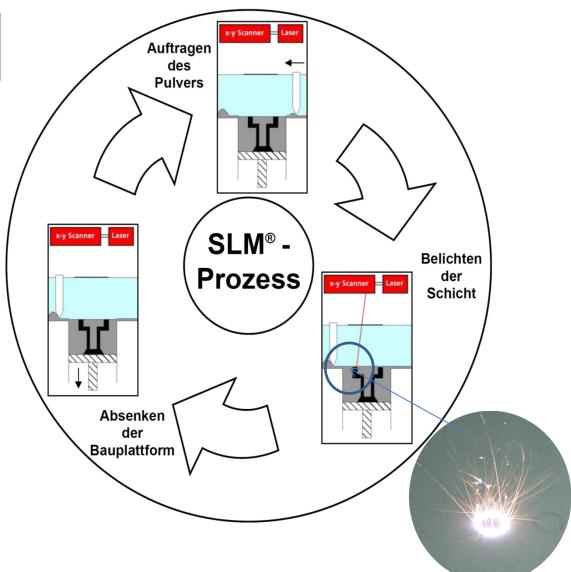

Since 1995 SLM[®] technology development in close co-operation between Fockele & Schwarze (F&S, Paderborn) and the Fraunhofer ILT (Aachen)

1996 Patent filed by W. Meiners, K. Wissenbach and A. Gasser

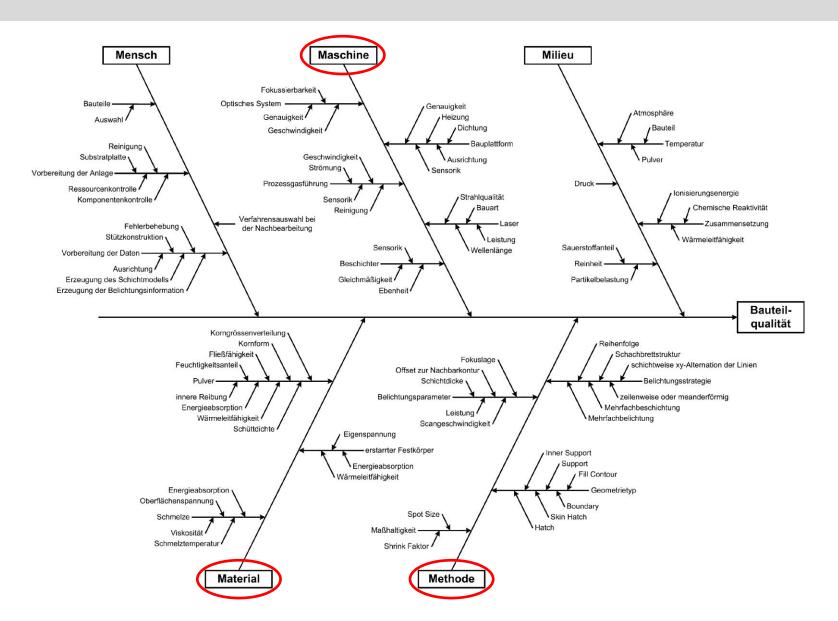
1998 Delivery of first SLM machine from F&S to Trumpf

1999 ff Further F&S machines delivered to industry and R&D institutes and start of the cooperation F&S – SLM Solutions

Everything else is a fairy tale ...


Selective Laser Melting Process

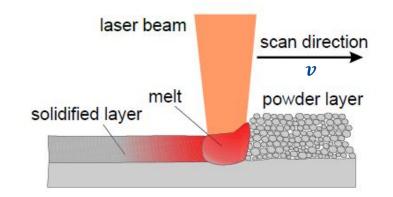
Selective Laser Melting of metal powder materials

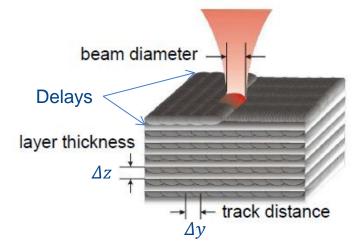

Cyclic Process:

- 1. Powder Layer Deposition
- 2. Laser Exposition
- 3. Lowering of Build Platform by exactly one Layer

Fishbone diagramm of the SLM process variables

Picture Source: FhG ILT Aachen

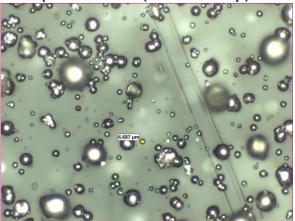

Main SLM variables


- L: laser power
 v: scan velocity
 Δy: hatch distance
 Δz: layer thickness
- Energy Density $E = L/(v \times \Delta y \times \Delta z)$
- Build Rate: $V = v \times \Delta y \times \Delta z$

Example for aluminium with one laser: v \approx 1000 mm/s, $\Delta y \approx$ 0,2 mm, $\Delta z =$ 0,05 mm

- \rightarrow V = theoretical build rate \approx 35 cm³/h
- without delays and recoating time
- good accordance with reality for parts with large volume

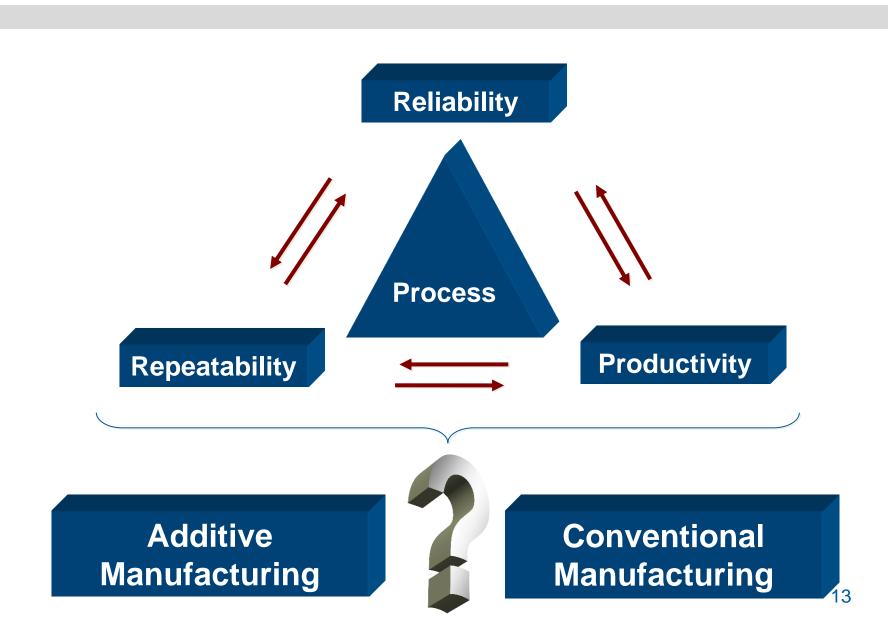
Conclusion: The four main variables are strong levers for productivity increase


Qualified metal materials

- Titanium (Ti cp, TiAl6Nb7, TiAl6V4)
- Aluminium (AlSi12, AlSi10Mg, AlSi7Mg)
- Cobalt Chrome (ASTM F75)
- Steels (1.2709, 1.2344 (H13), M333, 1.4404 (316L), 1.4410, 1.4542 (17-4PH))
- Inconel (e.g. 625, 718, 738, 939)
- Hastelloy X
- CuSn10 Bronze

Spezifications:

- spherical particles
- 10 μm < ø < 45 μm
- 20 μm < ø < 60 μm (Alu)
- good flowability
- dryness
- pureness (chemistry)



Tooling / Mouldmaking and Part Production

Reliability, Repeatability, Productivity

SLM Solutions – a leader in metal 3D printing

Key products

A leading metal 3D printing company

- Historical origins in rapid prototyping technology
- Paved the way for today's primary focus: *3D printing* for industrial volume production and prototyping
- A leader in selective laser melting technology
- Installed base of > 200 SLM systems
- > 100 machines planed for 2015

SLM 125^{HL}

Details Excerpt

- Build Volume 125 x 125 x 125 [mm]
- 1 Fiber Laser 1x400 W
- Productivity up to 15 cm³/h
- Laser Focus 85 μm, variable
- New Optic Design without F-Theta
- Layer Thickness 20 μ m 50 μ m
- Other Features like SLM 280 HL

SLM 280^{HL} / PSH 100

Details Excerpt

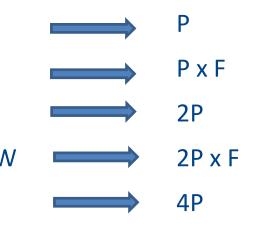
- Build Volume 280 x 280 x 350 [mm]
- 2 Fiber Lasers 2x400 W
- Focus Diameter 85 μm, variable
- Layer Thickness 30 50 μm (150 μm)
- New Optics without F-Theta
- Largely Increased Productivity
- Very Short Powder Deposition Time
- Highly Efficient Weld Smoke Exhaustion
- Argon Gas Recirculation
- Optical Layer Control for QA
- Substrate Plate Pre-Heating 200° C
- Closed Loop Powder Cycle

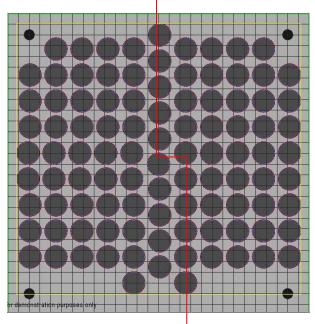
....

SLM 500^{HL} with Part Removal Station and Powder Recycling Station

Build Volume 500 x 280 x 365 [mm]	Automatic Powder Recycling
Productivity increased > 100 cm ³ /h	Exchange of Build Cylinder < 30 Min.
Twin System 2x 400 W Lasers	Quad System 4 x 400 W Lasers

Formula 1 gearbox (courtesy FIT AG)




Aluminium parts built on a SLM 500^{HL} Quad System

Productivity P

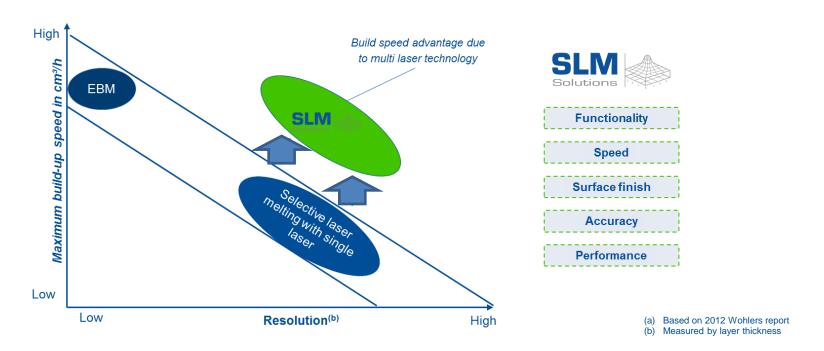
Single scanner, single laser / 400 W Single scanner, dual laser /400 W + 1000 W Twin scanner, twin laser / 2 x 400 W Twin scanner, double dual laser/ 2 x 400 W + 2 x 1000 W Quad scanner, quad laser / 4 x 400 W

Overlap area with the same high density and mechanical properties compared to single scanner/laser area?

YES!

Parting line between scan areas

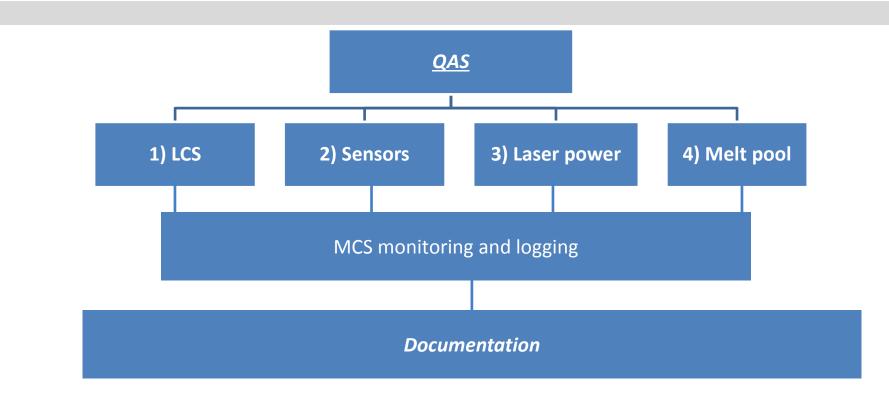
Production of parts with quad scanner S and quad laser in the SLM 500 ^{HL}



- Production of large or many parts with 4 lasers in a SLM 500 ^{HL} with build envelope of 500 mm x 280 mm x 325 mm
- Build envelope can be increased in the future using even more lasers and scanners

The Industrial Automation of the SLM Technology

Illustrative build-up speed and resolution of selected powder bed fusion systems^(a)



The Selective Laser Melting System SLM 500^{HL} provides a build chamber of 500 x 280 x 325 mm³ and works with 2 – 4 scanners and up to 4 lasers. All scanners are working simultaneously which together with the high laser powers leads to a large productivity increase.

The transport of metal powder is done by a continuous conveying system due to the increased volumes and weights. This automates the management of powder and eliminates the manual handling of loads with bottles and containers.

QAS Quality Assurance System Module overview

Status

- The QAS includes 6 modules (caustic measurement and dynamic powder control not shown here)
- The modules are already in place, are being tested or in development.
- Display and processing is divided into internal monitoring and logging.

QAS 1) Layer Control System LCS

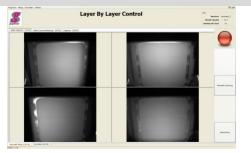


Figure: Single images for error detection and analysis..

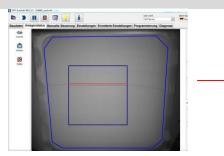


Figure: Automatic error detection of the whole platform.

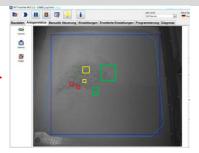


Figure: Automatic error detection of individual process errors.

Specification

- Image documentation after powder application and after exposure
- Automatic analysis of the captured image data and following error detection
- Possibility of manual adjustment of conditions and limits for error detection

- Automatic and immediate identification of individual process errors instead of analysing the hole platform
- Possibility of additional powder layering on some error patterns
- Time and cost savings by:
 - unloading of process critical parts during a job
 - build parts by trouble-free process flow

QAS 2) Sensors

Time	Platform	Build Chamber	Pump1	Cabinet	Cabinet 2	Optical Bench	Collimator	Ambiance	Oxygen 1	Oxygen 2	Pressure	Filter Status	T_LL	T_LR	T_U	R_LL	-	-	-	^
15:22:49	30.4 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.48 %	17.00 %	0.1 mbar	0.0 mbar	0	0	0	1	0	0	0	1
15:22:51	30.5 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.49 %	17.00 %	0.1 mbar	0.0 mbar	0	0	0	1	0	0	0	1
15:22:53	30.4 °C	31.9 ℃	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.48 %	17.00 %	0.0 mbar	0.0 mbar	0	0	0	1	0	0	0	1
15:22:56	30.5 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.49 %	17.00 %	0.1 mbar	0.0 mbar	0	0	0	1	0	0	0	1
15:22:57	30.4 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.49 %	17.00 %	0.2 mbar	0.0 mbar	0	0	0	1	0	0	0	1
15:22:59	30.4 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.49 %	17.00 %	0.1 mbar	0.0 mbar	0	0	0	1	0	0	0	1
15:23:01	30.4 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.49 %	17.00 %	0.0 mbar	0.0 mbar	0	0	0	1	0	0	0	
15:23:03	30.5 °C	31.9 °C	23.9 °C	25.9 °C	25.2 °C	25.9 °C	24.5 °C	24.6 °C	22.49 %	17.00 %	0.0 mbar	0.0 mbar	0	0	0	1	0	0	0	÷.
•	III III																		Þ	
										_			_							
Protocol	Sensors																			

Figure: Extract of the sensor representation in the process constrol system of the Selective Laser Melting System.

Specification

- Automatic data monitoring of all sensors every two seconds
- Control and output of temperatures, oxygen control, inert gas pressure and filter conditions

- Ensuring consistent process conditions
- Process control used as a security guard
- Possibility for the input of individual limits
- Documentation and the possibility of error feedback

QAS 3) Laser Power Monitoring

Specification

- Detecting via beam splitter in the optical bench
- Permanent laser power measurement, display of percentage variation every second
- Depression of laser power or laser breakdown leads to warning or process interruption

- Permanent monitoring of the actual laser power during build process
- Long time monitoring and detection of laser power losses, predictive life cycle management
- Cost reduction

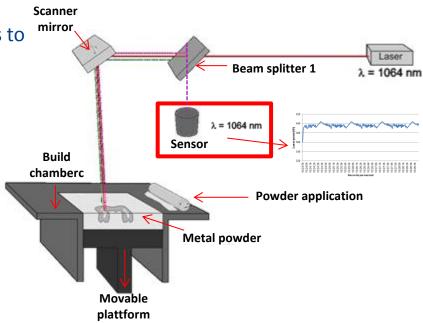


Figure: Schematic diagram for the assembly of the Laser Power Monitoring

QAS 4) Melt Pool Monitoring

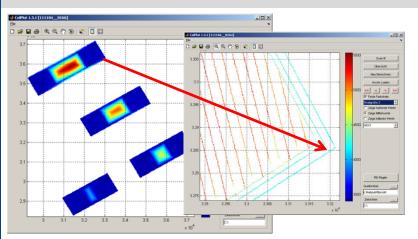
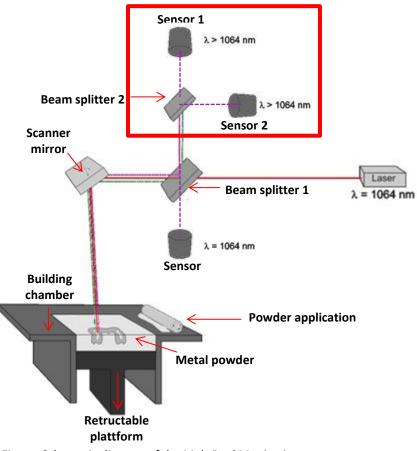
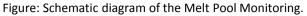
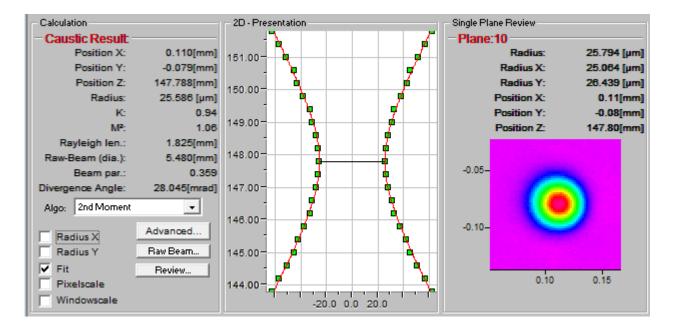




Figure: Visualization of the thermal radiation map of a current layer

Specification

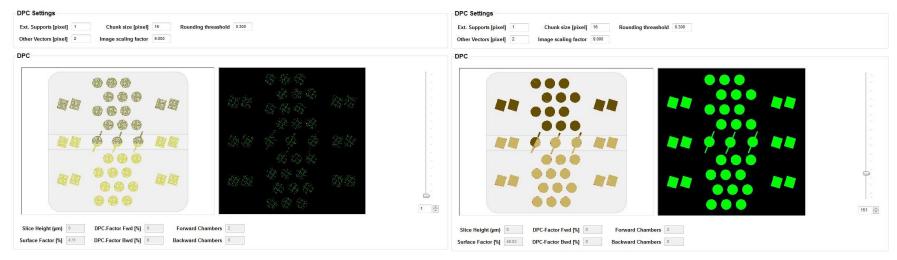
- Measurment of the thermal raidation (I ~ T⁴) via two IR sensors
- Real-time (100 kHz repetition rate) measurement of melt pool thermal radiation
- Possible control of laser power
- Measurement and calculation of temperature and subsequent laser power control in 60 – 70 μs
- Intensity (temperature) profile of individual melting lines



QAS 5) Caustic Measurement

Specification

- Measurement of the beam profile
- M² value
- Laser spot size
- Thermal focus shift


- Beam diagnostic serves as an early warning system to maintain and improve process stability
- Error sources can be located quickly and easily
- Measurement during service (twice a year or more on demand)

QAS 6) Dynamic Powder Control

Specification

• Automatic powder delivery dependent on surface coverage of each layer (percentage of surface covered with parts)

Surface coverage large

Advantages

Reduced powder overdose

Surface coverage small

- Increased process stability
- Cost reduction

Vielen Dank für Ihre Aufmerksamkeit !