

ÜBERTRAGBARKEIT VON PROZESSPARAMETERN BEIM PULVERBETTBASIERTEN SCHMELZEN VON METALLPULVERN VERSCHIEDENER HERSTELLER MITTELS LASERSTRAHL

Prof. Dr.-Ing. Jan T. Sehrt Oliver Pannitz, M. Sc.

rame

Lehrstuhl – Hybrid Additive Manufacturing

2

SPP 2122 – Materials for Additive Manufacturing

Eigenes Teilprojekt (2019 – 2021)

Development of surface tailored metal powders for increased production efficiency at the laser powder-bed fusion additive manufacturing process

Allgemeine Ziele des Teilprojekts

- Untersuchung modifizierter Pulverwerkstoffe
 - Absorption
 - Geschwindigkeit des Pulverauftrags
 - Thermische Leitfähigkeit
 - Einfluss auf Bauteilqualität
- Prognose der thermischen Leitfähigkeit

RUHR UNIVERSITÄT BOCHUM

Inhalt

- 1. Motivation
- 2. Laser-Strahlschmelzen (PBF-LB/M)
- 3. Material und Methoden
- 4. Ergebnisse und Diskussion
- 5. Zusammenfassung
- 6. Ausblick

RUHR UNIVERSITÄT BOCHUM

Motivation

- Erhöhte Verkaufszahlen von Metallsystemen in der additiven Fertigung
 - Erhöhte Nachfrage nach metallischen Pulverwerkstoffen
 - Hohe Kostenunterschiede zwischen Pulverlieferanten
 - Unterschiede in der Pulverqualität
- Edelstahl (1.4404/316L) als eines der am häufigsten verarbeiteten Materialien beim Laser-Strahlschmelzen (PBF-LB/M) [3]

Sales of AM-Systeme (Metall)

Übertragbarkeit von Standardparametern für den Laser-Strahlschmelzprozess?

2000

[2] Wohlers Report 2018[3] Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. (2016) Additive manufacturing of metals, Acta Materialia, 117: 371–392

RUHR UNIVERSITÄT BOCHUM

Laser-Strahlschmelzen (PBF-LB/M)

Volumenenergiedichte und Pulverqualität repräsentieren wichtige Einflussgrößen auf den Laser-Strahlschmelzprozess

[4] TRUMPF GmbH + Co. KG[5] Buehler – ITW Test & Measurement GmbH

C All rights reserved

Eingangsparameter

Bauprozess

Ausgangsparameter

- Charakterisierung von fünf Metallpulvern (Edelstahl 1.4404) verschiedener Lieferanten
 - Partikelgrößenverteilung bestimmt durch Mastersizer 2000 von Malvern Panalytical Ltd.
 - Pulvermorphologie analysiert durch Keyence VHX 6000 Digitalmikroskop

Element	Fe	Cr	Ni	Si	Мо	Mn	Р	S	С
Gehalt in	bal.	16,5 –	10,0 –	max.	2,0 –	max.	max.	max.	max.
Gew%		18,5	13,0	1,0	2,5	2,0	0,045	0,015	0,03

Eingangsparameter

- 25 Proben auf einer kommerziell erhältlichen Laser-Strahlschmelzanlage (*Trumpf TruPrint 1000*)
- Probe #13 repräsentiert den 1.4404 Standard Parametersatz
- Alternierende (90°) Schachbrettstrategie
- $Ds = 20 \ \mu m, \ h_D = 90 \ \mu m$
- Proben (5 × 5 × 5 mm³) verbunden mit der Bauplattform durch eine umgedrehte Pyramidenform
- Entfernung der Proben durch einen angepassten Steckschlüssel

23 24 25 22 144 Nominal P_L in W 17 18 19 20 132 16 12 13 15 120 11 14 8 9 10 108 6 2 3 4 5 96 560 630 700 770 840 Nominal v_s in mm/s

Bauprozess

Ausgangsparameter

RUHR UNIVERSITÄT BOCHUM

Eingangsparameter

Bauprozess

Ausgangsparameter

 Optische Analyse der relativen Dichte (ρ_{rel}) durch das Keyence VHX 6000 Digitalmikroskop

$$\rho_{rel} = \frac{A_{pore}}{A_{extr}} \times 100 \ \%$$

Name	Symbol	Unit
Relative Dichte	$ ho_{rel}$	%
Porenfläche	A _{pore}	mm²
Extraktionsbereich	A _{extr}	mm²

- Ätzung der Proben durch V2A-Beize zur Untersuchung der Mikrostruktur
- HV₁₀ Härtemessung unter Verwendung des KB 30 S von KB Prüftechnik GmbH

Partikelgrößenverteilung

- Reduzierte Partikelgröße bei Pulver A, D und E
- Partikelgröße (d₅₀) von Pulver A ca. 27 % kleiner als Hersteller B

Supplier	d ₁₀ in µm	d ₅₀ in µm	d ₉₀ in µm
А	19,44	31,00	47,00
В	28,40	42,03	61,37
С	28,40	41,02	56.90
D	19,60	31,90	47,40
E	19,90	33,80	49,00

RUHR UNIVERSITÄT BOCHUM

Morphologie

- Erhöhte Sphärizität der Pulverpartikel bei Pulver A, B und E
- Erhöhtes Vorkommen von Satelliten und unregelmäßig geformten Pulverpartikeln bei Pulver C
- Pulveransammlungen bei Pulver D erkennbar
- Beeinträchtigung der Schüttdichte und Fließfähigkeit

100 µm

RUHR UNIVERSITÄT BOCHUM

100 µm

Relative Dichte

C All rights reserved

RUHR UNIVERSITÄT BOCHUM

Relative Dichte

- Erhöhte relative Dichte bei erhöhter Volumenenergiedichte
- Forderung laut VDI 3405 Blatt 2 → ρ_{rel} = 99 %
- Höchster Durchschnittswert von ρ_{rel} = 99,77 % (Pulver A)
- Niedrigster Durchschnittswert von ρ_{rel} = 99,11 % (Pulver C)
- Kleinere Partikelgrößenverteilung möglicherweise vorteilhaft für Dichte
 - Erhöhte Absorption aufgrund mehrfacher Streuung des Laserstrahls
- Formation von Poren aufgrund unregelmäßiger Partikelform und dessen Einfluss auf die Verteilung des Pulvers

Mikrostruktur

- Epitaktisches Kornwachstum
- Unregelmäßige Schmelzbad-Geometrie bei C und D
- Auffällig dunkle Stellen an der Berandung der Schmelzbäder bei D

Härtemessung

- HV₁₀-Wert von Probe D ca. 16 % kleiner als von Probe E
- Probe D mit geringster
 Standardabweichung
- Mögliche Beeinflussung der Härte durch erhöhtes Vorkommen von Einschlüssen und unregelmäßiger Schmelzbadgeometrie

Ökonomische Beurteilung

- Große Preisunterschiede zwischen den Lieferanten
 - Geringste Preis (B) nur ca. 40 % vom teuersten Lieferanten (A)
- Industrie und Forschung
 - Bestellung großer Pulvermengen wirkt sich positiv auf den Preis aus
 - Analyse der Qualität der Pulverwerkstoffe notwendig
- Hochleistungskomponenten
 - Prüfung mechanischer Eigenschaften notwendig
- Zur Kostenersparnis
 - Verwendung des Pulvers von Drittanbietern mit Adaption des Prozesses und Prüfung möglich

Zusammenfassung

- Edelstahl 1.4404 von fünf verschiedenen Lieferanten
 - Partikelgrößenverteilung
 - Morphologie
- Standardisierter Bauprozess
 - Prozessierbarkeit
 - Übertragbarkeit von Standard Prozessparametern
- Bauteilqualität
 - Relative Dichte
 - Mikrostruktur
 - Härtemessung

- Theoretische Übertragbarkeit von Standardparameter auf einer kommerziellen Laser-Strahlschmelzanlage möglich
- Vergleichbare relative Dichte von > 99,5 % bei allen Pulvern möglich (Standard)
 - Leichte Anpassung der Prozessparameter erforderlich, um Dichte
 > 99,5 % zu erreichen
- Keine direkte Korrelation zwischen relativer Dichte und Härte ersichtlich (Hersteller D)
 - Übertragbarkeit fragwürdig
- Pr
 üfcharge empfehlenswert

Ausblick

[7] Freeman Technology

Prof Dr.-Ing. Jan T. Sehrt Additive Manufacturing
Ruhr Universität Bochum
Universitätsstr. 150
44801 Bochum
Tel.: +49 234-32-26162
Email: Jan.Sehrt@ruhr-uni-bochum.de

20 www.ham.rub.de

C All rights reserved

Lehrstuhl für

Hybrid Additive Manufacturing Prof. Dr.-Ing. Jan T. Sehrt

> RUHR UNIVERSITÄT BOCHUM

End