
International Congress and Conferences on Computational Design and Engineering 2019 (I3CDE 2019)

Middleware for Work Support in Industrial Contexts

(MiWSICx)

Hitesh Dhimana and Carsten Röckerb

aTH OWL University of Applied Sciences and Arts, Lemgo Germany

E-mail: hitesh.dhiman@th-owl.de
bTH OWL University of Applied Sciences and Arts and Fraunhofer IOSB-INA, Lemgo Germany

E-mail: carsten.roecker@th-owl.de

Abstract

It is generally acknowledged that technological

innovation is leading to an increase in the complexity of

industrial work. Hence, work assistance has emerged as

an important theme in the context of cyber-physical

production systems and Industry 4.0 to assist workers in

assembly, logistics, maintenance and supervision. Recent

research in this domain has focused on demonstrating

assistance applications using mobile computing devices

such as tablets, smartphones, AR/VR glasses and

wearables, but the aspects of technology induced

complexity in industrial work - distribution, concurrency,

information complexity, and variability of information

interaction, and their subsequent effect on human

workers is yet to be tackled.

This paper has two core contributions: first, it

reframes the problem of complex industrial work through

activity theory, which leads to a conceptual model that

couples human information needs to interactive artefacts

within an activity context. Second, the problem of

assistance is viewed as managing information flow

between multiple devices grouped into fluid and adaptive

activity contexts, managed by MiWSICx, (Middleware

for Work Support in Industrial Contexts) a novel,

distributed middleware designed using the actor model

of concurrent computation.

Keywords –

Cyber physical production systems, assistance,

complexity, middleware, actor model.

1 Introduction

Owing to extensive miniaturization and digitalization,

the factory floor is marked by an increasing use of cyber-

physical systems (CPS), or in manufacturing, cyber-

physical production systems (CPPS), referring to the

interconnected, yet distributed, nature of physical

processes and their control. In the German speaking part

of the world, the term Industry 4.0 is used [1]. With

advancement in communication technologies and

machine learning algorithms, it is postulated that many

existing activities will be automated and newer, complex

activities will be created for human workers.

These activities stem from the need to prevent

breakdowns in workflow on increasingly automated

manufacturing lines. This is because as the degree of

automation increases, it also exposes the complexity,

inconsistencies and variation in manufacturing, the

effects of which were until now smoothed over by

human workers’ ingenuity and experience [2]. As such,

introducing technology does not always replace a human

weakness, it perpetuates new strengths and weaknesses,

in often unanticipated ways [3]. While automating a

system, by corollary, implies reducing its dependency on

human intervention, in most cases, the human intervenes

only when the system cannot handle a situation.

The proliferation of multiple modes of interaction via

mobile devices has enriched the possibilities of designing

and configuring assistance – it is argued that by

increasing the number and modality of devices, the

corresponding flexibility of providing situational

assistance is improved [4][5], but there exists a gap

between the paradigms that have led the development of

distributed interaction thus far, and what is needed in the

approaching era of CPPS. Without a proper

understanding of the underlying context of human work,

we lack the conceptual tools to design and deploy multi-

device assistance.

In the next sections, we explore both the conceptual

and technical foundations that led to the development of

MiWSICx (Middleware for Work Support in Industrial

Contexts). Section 2 introduces the nature of work in

CPPS, in view of which the contribution of activity

theory is highlighted in section 3, following which

section 4 develops the technical foundation of MiWSICx.

Section 5 concludes the paper.

Middleware for Work Support in Industrial Contexts (MiWSICx)

2 Nature of Work in a CPPS

Industry 4.0 commits to a future consisting of smart

factories as opposed to deserted factories [6]. According

to Gorecky et al. [7], human workers are seen "as the

most flexible entity in cyber-physical production

systems", and they will be "faced with a large variety of

jobs ranging from specification and monitoring to

verification of production strategies." Supported by

technology, human workers will achieve this flexibility

by relying on their own skills, knowledge and creativity,

supported by an ecology of both specialized and multi-

purpose devices, novel ways of interaction, analysis and

visualization of data distributed across multiple spatial

contexts.

In the following sections, we elucidate some of the

qualities of future production work both in its technical

and human form and investigate how the former affects

the latter.

2.1 Operational Flexibility and Concurrency

While principles of cellular manufacturing and group

technology have focused on optimizing the components

of a manufacturing process, for example machines,

material handling, product mix, part routing/sequencing

and workstation layout, many models of manufacturing

in Industry 4.0 aim for flexible and complex production

environments via distributed services [8] or agent-based

systems [9]. In such smart factories [10], on-demand and

completely customizable smart products [11], can be

manufactured on the same manufacturing lines.

While this technical flexibility allows technology

reconfiguration and deployment across various

hierarchical levels, it does not imply that technology

alone can handle this variability. For a human worker,

tasks become increasingly concurrent - the variety and

inter-dependency of technical and logistical tasks, both in

terms of their location and activities, is higher,

demanding not only explicit but also tacit knowledge. As

fewer workers tend to more and more machines, mobility

and task switching is necessary.

2.2 System Complexity and Variability of

Information Interaction

There seems to be no one definition of complexity,

nonetheless, complexity in the industrial domain has

drawn a large amount of research. According to El

Marghay et al. [12], the complexity of any system

manifests itself in functional, structural, spatial, and

temporal domains. Lee and Wieringa [13] identify the

shaping factors for process and control system

complexity, and list three factors – variety (of), number

(of) and links (between) components, loops, variables, etc.

A CPPS thus exhibits complexity in all four core domains

of any computational system - function, structure, space

and time.

The role of HMI in reducing perceived complexity

has been previously studied in [14]. However, how this

variety can be achieved by human workers is not possible

by just implementing individual applications on different

devices, since the situation in which the workers find

themselves changes the kind of information they look for

[15]. The structural ambiguity of complex tasks tends to

place a higher cognitive and informational demand on the

worker, based on the individual experience and

knowledge [16]. Further, the level of a-priori

determinability of a task’s information requirements

shapes how one searches for information – as complexity

increases, the number of sources increases, while their

specificity reduces [17].

2.2.1 Summary

To recap, a CPPS is characterized by its

compositional and informational variety, as well as the

sequential and parallel flow of information within these

spatially and temporally distributed components. The

effect of this variety is not seen at a component level, but

at a system level as errors and breakdowns due to

unexpected disturbances. Tasks are spatially and

informationally diverse, coupled with sources of

information and actuation. To handle complexity,

workers need to gather information from different

sources.

A conventional approach to assistance based on

desktop or mobile applications is only sufficient in cases

where information needs are a-priori determinable. As an

example, it has been demonstrated time and again, in

various studies, that help manuals in desktop applications

are rarely used [18] [19]. The cited reason is that software

designers can hardly anticipate the myriad combinations

of how, why, what and where am I questions that users

ask during application use [20]. The context of assistance

is therefore intimately tied to the nature of work, or

activities, that users perform, instead of the designed

application workflow.

3 From Applications to Activities

A review of industry 4.0 literature reveals that the

focus hitherto has been on developing digital applications

[21]. The area of human machine interaction in this

respect has only recently been explored, where assistance

is limited to a single interactive device with assembly or

maintenance manuals, usually coupled to a particular

workstation or a task [22]. Multi-device and multi-activity

assistance is a field yet to be explored in the industrial

domain; at the time of writing this paper, no such

framework for industrial work assistance has been found

in our literature review.

International Congress and Conferences on Computational Design and Engineering 2019 (I3CDE 2019)

In section 2, we discussed that the nature of work in a

CPPS is distributed and informationally diverse. While

situated, task-based applications offer assistance in their

own context, combining and switching between multiple

activity contexts demands a higher-level view of human

activity. One of the prominent fields in HCI research that

puts activity at its core is activity-centric computing [23],

discussed in the next section.

3.1 Activity Centric Computing

Bardram et al. [23] define the following principles of

activity-centric computing:

a) Activity-Centered - A ’Computational Activity’

collects in a coherent set a range of services and data

needed to support a user carrying out an activity.

b) Activity Suspend and Resume - A user can suspend,

resume and alternate between activities. Resuming an

activity should bring forth the data and services

needed for that activity.

c) Activity Roaming - An activity supports distribution,

such that it can be suspended on one device and

resumed on another.

d) Activity Adaptation - An activity adapts to the

resources available on the device on which it is

consumed.

e) Activity Sharing - An activity is shared among

collaborating users, such that a participant can resume

an activity and continue the work of another user.

f) Context Awareness - An activity adapts itself to the

user’s constraints as defined by the availability of

resources in the proximity.

The notion of an activity comes from activity theory,

introduced by Leontiev [24], who proposes that an

activity is what links any subject, human or non-human,

to objects in the world in which this subject exists. An

activity is seen as a three-level hierarchy, shown in Fig.

1. At the highest level, an activity accomplishes a motive

by reflecting on an object. An activity can be

differentiated from another only when it is intended

towards a different object. At the second level, actions

are carried out to realize conscious goals. At the third and

final level, actions are accomplished by means of

subconscious operations which are internalized patterns

of behavior acquired through learning or social

interactions [25]. Operations are affected by the

conditions in which they are carried out. Although a

hierarchal relationship between activity, action and

operation exists, they are not fixed in their relationship to

one another. For example, learning to type using a

keyboard is in the beginning an activity, which over time,

turns into an operation. Conversely, a breakdown [26]

forces us to consciously view operations as activities, for

example when the keyboard stops responding.

Figure 1. Activity hierarchy, taken from [24].

In activity theory, human activities between a subject

and an object are always mediated via tools or artefacts

[27], as shown in Fig. 2. In other words, we act on objects

through tools and artefacts, and in a complex activity

system, numerous varieties of mediating artefacts may be

involved. Wartofsky [28] distinguishes between primary

artefacts and secondary artefacts, the former being the

most obvious in everyday operations, for example tools,

while the latter being representations of tools as well as

plans, official- documents, explanatory models and notes.

Figure 2. Activity Mediation as conceptualized

by Vygotsky [27]. S, O and A refer to subject,

object and artifact, respectively.

While activity centric computing has been used to

design frameworks for supporting office work, it has not

yet been used in the industrial domain. The next section

develops a conceptual model that allows us to view a

CPPS through an activity-centric perspective.

3.2 Activity Centric CPPS, or ACCPPS

Zamfirescu et al. [29] adopt a human-centric

approach in defining a CPPS architecture for a smart

factory, shown in Fig. 3.

Figure 3. Anthropocentric CPPS model, from [29].

A CPS is divided into three constituent components:

the physical component (PC), the cyber/computational

component (CC) and the human component (HC). Each

Middleware for Work Support in Industrial Contexts (MiWSICx)

of these components is connected outside the CPPS to a

specific physical, computational and social dimension.

Adapters transfer information between pairs of these

components. From an engineering perspective, the CC

and PC are separate components, but by adopting an

activity-centric perspective, the CC and the PC are the

mediating artefact and the object of the same activity.

The mediating nature of the adapters becomes clearer

when one turns the model ’inside out’, and replaces the

HC, CC and PC in a CPPS by their activity centric

counterparts, as shown in Fig. 4. In this model, an

interactive artefact, AI allows the user to interact with the

CC, whereas the PC is at the receiving end of the action.

Figure 4. Activity-centric CPPS, based on Fig. 3

Adopting this model allows us to imbue objects and

artefacts with spatial and interactive properties, thereby

allowing activities to be distributed across objects and

devices. However, the availability of a CC on different

devices is dependent on the properties of the device, as

discussed in the next section.

3.2.1 Interaction Coupling

As mentioned in section 3.1, one of the main tenets of

activity-centric computing is to manage the services and

data needed to support a user carrying out an activity and

to adapt it to the device on which it is consumed.

However, with so many different devices at our disposal,

we also need to manage the relationship between the

device and the data and services it accesses at run time.

If we take into consideration the fact that actions are

afforded [30] by artefacts, user action can be digitally

afforded or prompted via informational cues [31] on

interactive artefacts. An action results in a feedback that

the user receives directly through the object or mediated

via the artefact. The artefacts mediate an intentional act

of the user accomplishing a goal, while the feedback aids

in reflection on the result of this consciously performed

act [32].

This coupling can be better understood by leveraging

the human-artefact model, developed by Bødker and

Klokmose [33]. In this model, an artefact possesses both

instrumental and operational capabilities. An artefact

instrumentalizes action by helping the user achieve a goal

and operationalizes it by virtue of its physical abilities.

In other words, an interactive device can be characterized

by what it affords, and how it affords it. Goumopoulos et

al. [34] use the term properties for the physical and

informational capabilities of a device. For use in an

ACCPPS, the instrumental nature of interactive devices

signifies their functionality, whereas properties such as

form factor, ergonomics, modalities are all operational

properties. Table 1 lists the instrumental and operational

capabilities of commonly use interactive devices. These

properties allow a matching of a resource or a service to

a corresponding device on runtime.

Table 1. Instrumental and operational capabilities of

interactive artefacts.

3.2.2 Activity Context

In a multi-device scenario, each interactive artefact

may be delegated a different role, that is, to act as a

mediator for different services, resources, feedback, or

action, depending on its instrumental and operational

capabilities. Further, each device may have both unique

and shared resources, allowing both specialization and

redundant modes of interaction [35]. A tablet may for

example, be used to search for information due to its

visual capability, whereas a smartwatch can be used to

deliver feedback due to its proximity to the human body.

Several devices and interaction possibilities may be

prioritized in terms device preference and availability.

The concept of an activity context encapsulates this

relationship between the action, feedback and resources

assigned to each device, as summarized in Table 2.

Table 2. Multi-device, single-user activity context

For a multi-device, multi-user scenario, sharing and

modification of resources, along with per user

configurations of action and feedback mediation need to

International Congress and Conferences on Computational Design and Engineering 2019 (I3CDE 2019)

be considered, as shown in Fig. 5. How MiWSICx

mediates different activity contexts is explained in the

next section.

Figure 5. Multi-device, multi-user activity context

4 MiWSICx

As a middleware managing activities in an ACCPPS,

MiWSICx manages the following tasks:

a) allow devices to discover a MiWSICx node;

b) communicate with these devices over various

channels;

c) provide access to resources and services;

d) communicate with CPPS objects through various

protocols;

e) support activity-centric computing for multiple

users and on various devices;

The architecture of MiWSICx is composed of two

core abstractions: the structural abstraction from which

data structures are derived, and the MiWSICx

communication protocol. MiWSICx is thus platform

agnostic and is designed to be deployed across different

machines as nodes in both horizontal and vertical

configurations, as shown in Fig. 6.

Figure 6. MiWSICx node configurations

4.1 Design

A detailed ontology of the activity entities in

MiWSICx is given in Fig. 7. Similar ontologies have

been developed by Bardram [36] and Moran et al. [37],

but the ontology model used in MiWSICx differs from

these ontologies in two ways. First, to adapt to a CPPS it

realizes the concept of an object as something that is

subject to a change of state as a result of user action and

adaptive to this change, and second, it introduces the

resource as a facilitator of this change of state.

Figure 7. MiWSICx core ontology

In MiWSICx, an activity consists of users, artefacts

and resources. As noted in section 3.1, the subject, or the

user, is the source of an activity, and has motives and

goals that are accomplished via actions afforded by

resources. The user may rely on different modes of skills,

rules and knowledge-based behavior [38], and therefore

has an adaptable information need met by multiple

devices and resources. An activity supports actions for

activity management, for example, starting, suspending

and pausing and switching an activity.

An artefact, or a device, is what mediates user action.

It is uniquely identified by its description, name and

location. Most digital devices support various modalities

and communication interfaces, or capabilities through

which they can exchange information. An activity can

contain more than one such device. Artefacts use

resources to support interactivity, and a resource points

to objects which needs to be uniquely identifiable and

locatable, both physically and/or digitally. Depending on

Middleware for Work Support in Industrial Contexts (MiWSICx)

its properties, an object has a state that can be changed,

either via the artefact, or by direct manipulation.

The entity structure in MiWSICx follows a

combination of both composition and aggregation style,

as shown in Fig. 8. At the top of the hierarchy sits the

activity context entity which aggregates different

activities for a user. One user is associated with one

activity context per MiWSICx node. An activity context

is a persistent entity that can be saved and reloaded when

a user logs out and logs back in on a MiWSICx node.

Figure 8. Core entities in MiWSICx

An activity consists of resources currently under use

along with the devices a user is interacting with. Devices

are not directly saved with the activity or the activity

context but are added to the activity each time a new

device connects. The intention behind this is to stay

adaptive to the contextual constraints in an environment.

A resource contains one or more objects. An object

can, further be represented by a resource, leading to a

recursive data structure. Whether or not an object is able

to respond to changes to its state is made explicit in its

capabilities, which determines if a feedback is available.

The action entity appears along with almost every

entity, for just like the activity hierarchy in activity theory,

different entities support corresponding actions.

An activity context supports actions to process user

login and switching between different activities. An

activity entity supports switching between different

resources and their corresponding assignment to devices.

Resources support actions that are geared towards

providing a service as a change in the resource itself or

its underlying objects states, for which the objects also

need to support actions themselves.

4.2 Basic Entities and Types

An entity is fully described by a combination of basic

entities, as described below:

• when: describes a point in time, in the form of a

timestamp in combination with a timeout value.

• where: describes a location in space, consisting of a

reference point, and a relative coordinate. A where

object also contains a representation for this point in

space, for example in the form of an image.

• representation: contains additional information about

an entity that is helpful in representing this entity via

some modality. A representation consists of either a

text description, or a resource.

• identity: consists of a name and/or a unique identity

number.

In addition, the following types are used to categorize

different entities:

• feedback direction: differentiates between an input

and output modality.

• feedback modality: describes different forms of

modalities that a device or object supports.

• resource type: common types of resources such as

Images, 3D objects, files and URLs.

• object type: distinguishes between a physical or a

virtual object.

4.3 Events

Between different activity components, the

abstraction that suitably covers conveying prompts and

actions is that of an event. An event is an occurrence- it

signals that something has happened in the real world or

in some other system [39]. Event attributes are briefly

described as follows:

• id: represents a unique id that the message is assigned

when created. This can serve as a reference for further

use if the event processing is not stateless.

• when: each event needs a timestamp and an

associated timeout interval.

• event type: differentiates between event types.

• payload: the payload in an event can be constructed

out of any specification capable of transmitting

objects, such as JSON or XML. MiWSICx uses JSON

payloads.

• source: refers to the sender of the event.

• sink: refers to the target, either in the form of a device,

or can describe a path, similar to a REST endpoint.

• priority: some events, for example alarms, may carry

a higher priority than other messages.

International Congress and Conferences on Computational Design and Engineering 2019 (I3CDE 2019)

4.4 Actor Model

In section 2.1, the need for adopting a better

abstraction for handling concurrency and distribution

was highlighted. The conventional approach for

modelling such a distributed middleware is by

programming multiple threads or processes in the context

of an application, where computation is separated from

communication. Thus, a typical distributed application

consists of some sort of communication framework,

either a broker-based architecture such as Data

Distribution Service (DDS), MQTT or ZeroMQ, or a

service-based architecture such as SOAP or REST

pattern, in conjunction with the core data processing

application.

In reality, multi-threading puts serious limitations in

the way of achieving its goal [40], the most significant

being the need for data invariance, which has three

implications for concurrent and/or distributed systems.

First, locking threads makes them wait for access to

shared resources. Second, such locking is hard to achieve

on distributed systems. Third, parent threads delegating

work to multiple child threads cannot handle exceptions

in child threads, since any exceptions that occur are local

to a thread, and the parent is unaware of issues on the

child thread. In addition, thread synchronization on

multi-core processors is a surprisingly expensive

operation, and it becomes worse as a problem is broken

down into multiple, smaller, synchronized tasks [41].

For managing dynamic activity contexts, using

multiple applications in the form of micro-services and

service-oriented architectures is a second option,

however, it does not come without its drawbacks.

Maintaining interoperability of several different services

can be a challenging task, further, the more distributed

the services are, the more complex they are to develop

and maintain owing to their distributed nature [42].

The actor model is proposed as a replacement that

mitigates the drawbacks of threads and service-oriented

architectures, while at the same time staying distributed,

concurrent and resilient. It was proposed in 1973 as a

mathematical theory of computation that treats actors as

the universal primitives of concurrent digital

computation [43], and was developed further by Agha

[44]. An actor is a computing abstraction, an entity that

contains a local, immutable state; does not share this local

state with other actors; and is responsible for updating is

local state.

The word actor emphasizes the design principle of

separation of concerns. Each actor only performs a single

job. Structurally, in an actor model, systems comprise of

concurrent, autonomous entities, called actors and

messages. An actor requires an immutable name or an

address to send messages to it, and actors communicate

exclusively by sending asynchronous messages to one

another [44], as shown in Fig. 9.

The structural and functional constraints on actors

result in the following behavioral properties [45]:

• Encapsulation: An Actor cannot access the state of

other actors, nor can actors share states. The

possibility of race conditions or shared data state

corruption is avoided.

• Fair Scheduling: Messages are guaranteed to be

eventually delivered to destination actors, and

consequently, no actors are starved of resources.

• Location Transparency: The actual location of an

actor has no bearing on its name. An actor could be

on the same core, on the same CPU, or on a different

node on a network.

• Mobility: Actors can be updated and moved across

different nodes individually, and an Actor Model can

be reconfigured for load balancing and fault tolerance.

This is different from typical OOP applications where

the entire application must be compiled and deployed.

These properties consequently facilitate the

processing of requests and events coming from multiple

devices, all of which may belong to the same activity and

may compete for resources. Actors handling

communication with devices can react to messages, while

instantiating and delegating problems to other actors.

Figure 9. Actor model, taken from [42].

4.5 Actors in MiWSICx

Designing with actors usually means the software

must be constructed in accordance with the principle of

separation of concerns, thus each actor performs a single

task. The following sections elaborate the various actors

created in MiWSICx, shown in Fig. 10.

4.5.1 Core Actors

The root or top-level actor in MiWSICx is referred by

the same name. Its job is to startup the MiWSICx base

system, which consists of a comms actor, the resource

manager actor, the activity context manager actor and

the discovery actor. All the actors are informed of each

Middleware for Work Support in Industrial Contexts (MiWSICx)

other’s actor addresses at startup. Upon shutdown, the

MiWSICx actor sends an exit message to all the child

actors, who are then responsible for shutting down their

respective child actors.

A device can join MiWSICx depending on its

capability. Camera enabled devices can use QR codes to

scan and obtain the IP address, and devices without this

capability can communicate with a Bluetooth or NFC

sensor. Another way is to use UDP broadcast for

exchanging the address of the MiWSICx endpoint, but

with several nodes broadcasting in the vicinity the user

will have to choose from a list of nodes. Once a device

knows the IP Address, it can communicate further by

establishing a connection to the TCP server on the

Comms Actor. Access to CPPS objects and other

MiWSICx nodes in the network is maintained by the

extern comms actor. Supporting user activities in the

form of activity templates, plans and resources is handled

by the resource manager actor.

Second tier actors may decide to start child actors.

For example, the resource manager can create service

provider actors that provide data analytics, and the

external comms actor may start an actor that

communicates with the CPPS hardware through ModBus

or OPC-UA. etc, allowing the system to configure itself

based on the desired needs and capabilities of the

background CPPS.

Figure 10. Actors in a MiWSICx node.

4.5.2 Device Handlers

When a device connects to a MiWSICx node, it needs

to announce its capabilities to the corresponding comms

actor, which then creates a device handler actor that

takes care of all further communication with this device.

Once the device disconnects, the corresponding device

handler actor is also destroyed.

Figure 11. Device handler actors.

Device handlers also act as event filters. For example,

when a feedback event is sent to a device handler, it can

decide based on its capability if it will forward the

message to the device, and if yes, how to best represent

this event.

4.5.3 Activity Context Actor

An activity context is started when a user logs in on a

particular device. First, the activity context manager

directs the request to the resource manager, which

searches for an existing context for this user. In case no

context is found, a new activity context handler is created

for the user. Any subsequent device connections with the

same user name will be directly added to the same

activity context handler.

The activity context actor itself is responsible for

routing messages within the context of a user activity and

contains a composite entity. The state of devices, for

example, in an activity context is handled by the device

handler actor, and the resources themselves are handled

by the resource handler actor.

Once an activity context is created, the user has

access to the services and resources available for either

restoring previously paused activities or creating new

ones. As new users connect, each user is assigned a new

activity context handler, and upon logging out, the

activity context is saved by the resources manager.

Sharing activities means assigning more than one user to

a context. Any changes made by one user are visible to

the other user as well.

4.5.4 MiWSICx Messaging Protocol

Within MiWSICx, events are transmitted as actor

messages, but for transmitting events to and from devices,

a messaging protocol is needed. The MiWSICx

messaging protocol is adapted from HTTP and is divided

into a header and payload. The header contains the event

attributes as presented in section 4.3, while the payload

contains information regarding the activity at hand.

4.5.5 Deployment

MiWSICx is written in Python and uses “The

Thespian Actor Framework” [46]. Python was chosen

because of its cross-platform compatibility, its dynamic

typing system, and its rich repertoire of stable libraries.

Nonetheless, there are several actor frameworks

available in various languages which can be chosen based

on technical and functional requirements. MiWSICx as

such does not rely on one language or library, allowing it

to run on a variety of hardware platforms.

5 Conclusions

The traditional approach to HCI in industrial contexts

International Congress and Conferences on Computational Design and Engineering 2019 (I3CDE 2019)

as an interface between man and machine needs to be

rethought in the form of human activity and how it flows

within different places and devices at various times on

the manufacturing floor. Problem solving as such cannot

be modelled as a predetermined division of roles between

the man and the machine; rather, the context of work

needs to be rethought as that of activities composed of

the human worker, his/her artefacts as devices and

informational resources, and the objects that are the

recipients of this activity. This shift in perspective allows

for design of systems that are adaptable and extensible by

the human workers themselves as their own creative

problem-solving tools. One approach to system design is

in the form of a middleware, and MiWSICx is the first

such middleware that implements such a design for

supporting work in industrial contexts.

A CPPS consists of a mixture of both networked and

non-networked components distributed in a spatial and

temporal manner, hence the framework for work support

also needs to be distributed. A high level of

responsiveness in handling multiple users, activities and

devices simultaneously means that an efficient

concurrency framework is needed, one that preferably

avoids the drawbacks of thread-based approaches. The

Actor Model is hence used as the foundation for the

development of MiWSICx, which is a generic framework

that can be deployed using any underlying Actor

implementation. By modelling the constituents of human

activity - users, devices, resources and objects, MiWSICx

manages activities across various device configurations,

which are established via operational and instrumental

properties of devices.

References

[1] Broy, M., and Schmidt, A. Challenges in

Engineering Cyber-Physical Systems. Computer,

47, 2 (Feb 2014), 70–72.

[2] Pfeiffer, S. (2016). Robots, Industry 4.0 and

Humans, or Why Assembly Work Is More than

Routine Work. Societies, 6, 16 (2016).

[3] Bainbridge, L. Ironies of Automation. Automatica,

19 (1983), 775–779.

[4] Lucke, D., Constantinescu, C., and Westkämper, E.

Smart Factory - A Step Towards the Next

Generation of Manufacturing. In Manufacturing

Systems and Technologies for the New Frontier

(London, 2008), M. Mitsuishi, K. Ueda, and F.

Kimura, Eds., Springer London, pp. 115–118.

[5] Valdez, A. C., Brauner, P., Schaar, A. K., Holzinger,

A., and Ziefle, M. Reducing Complexity with

Simplicity - Usability Methods for Industry 4.0.

Proceedings 19th Triennial Congress of the IEA, pp.

9–14.

[6] Spath, D., Ganschar, O., Gerlach, S., Moritz, H.,

Krause, T., and Schlund, S. Produktionsarbeit der

Zukunft - Industrie 4.0. Fraunhofer, 2013.

[7] Gorecky, D., Schmitt, M., Loskyll, M., and Zühlke,

D. Human-Machine Interaction in the Industry 4.0

Era. In 2014 12th IEEE International Conference on

Industrial Informatics (INDIN) (July 2014), pp.

289–294.

[8] Bettenhausen, K. D., and Kowalewski, S. Cyber-

Physical Systems: Chancen und Nutzen aus Sicht

der Automation. VDI/VDE-Gesellschaft Mess-und

Automatisierungstechnik (2013), 9–10.

[9] Vogel-Heuser, B., Lee, J., and Leitão, P. Agents

Enabling Cyber-Physical Production Systems. at-

Automatisierungstechnik 63, 10 (2015), 777–789.

[10] Lucke, D., Constantinescu, C., and Westkämper, E.

Smart Factory - A Step towards the Next

Generation of Manufacturing. In Manufacturing

Systems and Technologies for the New Frontier

(London, 2008), M. Mitsuishi, K. Ueda, and F.

Kimura, Eds., Springer London, pp. 115–118.

[11] Abramovici, M. Smart Products. In CIRP

Encyclopedia of Production Engineering. Springer,

2015, pp. 1–5.

[12] ElMaraghy, W., ElMaraghy, H., Tomiyama, T., and

Monostori, L. Complexity in Engineering Design

and Manufacturing. CIRP Annals 61, 2 (2012),

793–814.

[13] Li, K., and Wieringa, P. A. Understanding

Perceived Complexity in Human Supervisory

Control. Cognition, Technology & Work, 2, 2 (May

2000), 75–88.

[14] Guimaraes, T., Martensson, N., Stahre, J., and

Igbaria, M. Empirically Testing the Impact of

Manufacturing System Complexity on Performance.

International Journal of Operations & Production

Management 19, 12 (Dec. 1999), 1254–1269.

[15] Rasmussen, J., and Lind, M. Coping with

Complexity. HG Stassen (Ed.) (1981).

[16] Liu, P., and Li, Z. Task Complexity: A Review and

Conceptualization Framework. International

Journal of Industrial Ergonomics, 42, 6 (Nov. 2012),

553–568.

[17] Vakkari, P. Task Complexity, Problem Structure

and Information Actions. Information Processing &

Management, 35, 6 (Nov. 1999), 819–837.

[18] Sellen, A., and Nicol, A. Building User-Centered

On-Line Help. In Readings in Human–Computer

Interaction. Elsevier, 1995, pp. 718–723.

[19] Grayling, T. Fear and Loathing of the Help Menu:

A Usability Test of Online Help. Technical

Communication 45, 2 (1998), 168–179.

[20] Chilana, P. K. Supporting Users After Software

Deployment through Selection-Based

Crowdsourced Contextual Help. PhD Thesis, 2013.

[21] Brettel, M & Friederichsen, Niklas & Keller, M &

Middleware for Work Support in Industrial Contexts (MiWSICx)

Rosenberg, N. (2014). How Virtualization,

Decentralization and Network Building Change the

Manufacturing Landscape: An Industry 4.0

Perspective. International Journal of Science,

Engineering and Technology. 8. 37–44.

[22] Ong, S. K., and Nee, A. Y. C. Virtual and

Augmented Reality Applications in Manufacturing.

Springer Science & Business Media, 2013.

[23] Bardram, J., Bunde-Pedersen, J., and Soegaard, M.

Support for Activity-Based Computing in a

Personal Computing Operating System. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI’06), ACM

Press, pp. 211–220..

[24] Leont’ev, A. N. Activity, Consciousness, and

Personality. Prentice-Hall, Englewood Cliffs, N.J.,

1978.

[25] Baerentsen, K. B., and Trettvik, J. An Activity

Theory Approach to Affordance. In Proceedings of

the Second Nordic Conference on Human-

Computer Interaction (NordiCHI’02), ACM Press,

pp. 51–60.

[26] Bødker, S. A Human Activity Approach to User

Interfaces. Human Computer Interaction, 4, 3 (Sept.

1989), 171–195.

[27] Vygotsky, L. S. Mind in Society: The Development

of Higher Psychological Processes. Harvard

University Press, 1980.

[28] Wartofsky, M. W. Models: Representation and the

Scientific Understanding, 48. Springer Science &

Business Media, 2012.

[29] Zamfirescu, C.-B., Pîrvu, B.-C., Schlick, J., and

Zühlke, D. Preliminary Insides for an

Anthropocentric Cyber-physical Reference

Architecture of the Smart Factory. Studies in

Informatics and Control, 22, 3 (Sept. 2013), 269–

278.

[30] Baerentsen, K. B., and Trettvik, J. An Activity

Theory Approach to Affordance. In Proceedings of

the Second Nordic Conference on Human-computer

Interaction (New York, NY, USA, 2002),

NordiCHI ’02, ACM, pp. 51–60.

[31] Norman, D. The Design of Everyday Things:

Revised and expanded edition. Constellation, 2013.

[32] Wensveen, S. A. G., Djajadiningrat, J. P., and

Overbeeke, C. J. Interaction Frogger: A Design

Framework to Couple Action and Function through

Feedback and Feedforward. In Proceedings of the

2004 Conference on Designing Interactive Systems

Processes, Practices, Methods, and Techniques

(DIS’04), ACM Press, pp. 177–184.

[33] Bødker, S., and Klokmose, C. N. The Human-

Artifact Model: An Activity Theoretical Approach

to Artifact Ecologies. Human-Computer Interaction,

26 (2011), 315–371.

[34] Goumopoulos, C., and Kameas, A. Smart Objects

as Components of UbiComp Applications.

International Journal of Multimedia and Ubiquitous

Engineering 4, 3 (2009), 1–20.

[35] Vernier, F., and Nigay, L. A Framework for the

Combination and Characterization of Output

Modalities. In International Workshop on Design,

Specification, and Verification of Interactive

Systems (2000), Springer, pp. 35–50.

[36] Bardram, J. E. The Activity-Based Computing

Project. In Activity Context Representation (2011).

[37] Moran, T. P., Cozzi, A., and Farrell, S. P. Unified

Activity Management: Supporting People in e-

Business. Communications of the ACM 48, 12

(2005), 67–70.

[38] Rasmussen, J. Skills, Rules, and Knowledge;

Signals, Signs, and Symbols, and other Distinctions

in Human Performance Models. IEEE Transactions

on Systems, Man, and Cybernetics, 3 (1983), 257–

266.

[39] Etzion, O., Niblett, P., and Luckham, D. C. Event

Processing in Action. Manning Greenwich, 2011.

[40] Sutter, H., and Larus, J. Software and the

Concurrency Revolution. Queue, 3, 7 (Sept. 2005),

54–62.

[41] Latoschik, M. E., and Tramberend, H. Simulator X:

A Scalable and Concurrent Architecture for

Intelligent Realtime Interactive Systems. IEEE, pp.

171–174.

[42] Dragoni, N., Giallorenzo, S., Lafuente, A. L.,

Mazzara, M., Montesi, F., Mustafin, R., and Safina,

L. Microservices: Yesterday, Today, and

Tomorrow. In Present and Ulterior Software

Engineering. Springer, 2017, pp. 195–216.

[43] Hewitt, C., Bishop, P., and Steiger, R. A Universal

Modular Actor Formalism for Artificial Intelligence.

In Proceedings of the International Joint

Conference on Artificial Intelligence, 1973, pp.

235–245.

[44] Agha, G. A. Actors: A Model of Concurrent

Computation in Distributed Systems. Tech. Report,

Massachusetts Institute of Technology, Cambridge

Artificial Intelligence Lab, 1985.

[45] Karmani, R. K., Shali, A., and Agha, G. Actor

Frameworks for the JVM Platform: A Comparative

Analysis. In Proceedings of the 7th International

Conference on Principles and Practice of

Programming in Java (PPPJ’09), ACM Press, pp.

11–20.

[46] Quick, K. Python Actors. Retrieved from

https://thespianpy.com/

