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Abstract 

It is generally acknowledged that technological 

innovation is leading to an increase in the complexity of 

industrial work. Hence, work assistance has emerged as 

an important theme in the context of cyber-physical 

production systems and Industry 4.0 to assist workers in 

assembly, logistics, maintenance and supervision. Recent 

research in this domain has focused on demonstrating 

assistance applications using mobile computing devices 

such as tablets, smartphones, AR/VR glasses and 

wearables, but the aspects of technology induced 

complexity in industrial work - distribution, concurrency, 

information complexity, and variability of information 

interaction, and their subsequent effect on human 

workers is yet to be tackled. 

This paper has two core contributions: first, it  

reframes the problem of complex industrial work through 

activity theory, which leads to a conceptual model that 

couples human information needs to interactive artefacts 

within an activity context. Second, the problem of 

assistance is viewed as managing information flow 

between multiple devices grouped into fluid and adaptive 

activity contexts, managed by MiWSICx, (Middleware 

for Work Support in Industrial Contexts) a novel, 

distributed middleware designed using the actor model 

of concurrent computation. 
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1 Introduction 

Owing to extensive miniaturization and digitalization, 

the factory floor is marked by an increasing use of cyber-

physical systems (CPS), or in manufacturing, cyber-

physical production systems (CPPS), referring to the 

interconnected, yet distributed, nature of physical 

processes and their control. In the German speaking part 

of the world, the term Industry 4.0 is used [1]. With 

advancement in communication technologies and 

machine learning algorithms, it is postulated that many 

existing activities will be automated and newer, complex 

activities will be created for human workers.  

These activities stem from the need to prevent 

breakdowns in  workflow on increasingly automated 

manufacturing lines. This is because as the degree of 

automation increases, it also exposes the complexity, 

inconsistencies and variation in manufacturing, the 

effects of  which were until now smoothed over by 

human workers’ ingenuity and experience [2]. As such, 

introducing technology does not always replace a human 

weakness, it perpetuates new strengths and weaknesses, 

in often unanticipated ways [3]. While automating a 

system, by corollary, implies reducing its dependency on 

human intervention, in most cases, the human intervenes 

only when the system cannot handle a situation.  

The proliferation of multiple modes of interaction via 

mobile devices has enriched the possibilities of designing 

and configuring assistance – it is argued that by 

increasing the number and modality of devices, the 

corresponding flexibility of providing situational 

assistance is improved [4][5], but there exists a gap 

between the paradigms that have led the development of 

distributed interaction thus far, and what is needed in the 

approaching era of CPPS. Without a proper 

understanding of the underlying context of human work, 

we lack the conceptual tools to design and deploy multi-

device assistance. 

In the next sections, we explore both the conceptual 

and technical foundations that led to the development of 

MiWSICx (Middleware for Work Support in Industrial 

Contexts). Section 2 introduces the nature of work in 

CPPS, in view of which the contribution of activity 

theory is highlighted in section 3, following which 

section 4 develops the technical foundation of MiWSICx. 

Section 5 concludes the paper. 
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2 Nature of Work in a CPPS 

Industry 4.0 commits to a future consisting of smart 

factories as opposed to deserted factories [6]. According 

to Gorecky et al. [7], human workers are seen "as the 

most flexible entity in cyber-physical production 

systems", and they will be "faced with a large variety of 

jobs ranging from specification and monitoring to 

verification of production strategies." Supported by 

technology, human workers will achieve this flexibility 

by relying on their own skills, knowledge and creativity, 

supported by an ecology of both specialized and multi-

purpose devices, novel ways of interaction, analysis and 

visualization of data distributed across multiple spatial 

contexts.  

In the following sections, we elucidate some of the 

qualities of future production work both in its technical 

and human form and investigate how the former affects 

the latter. 

2.1 Operational Flexibility and Concurrency 

While principles of cellular manufacturing and group 

technology have focused on optimizing the components 

of a manufacturing process, for example machines, 

material handling, product mix, part routing/sequencing 

and workstation layout, many models of manufacturing 

in Industry 4.0 aim for flexible and complex production 

environments via distributed services [8] or agent-based 

systems [9]. In such smart factories [10], on-demand and 

completely customizable smart products [11], can be 

manufactured on the same manufacturing lines. 

While this technical flexibility allows technology 

reconfiguration and deployment across various 

hierarchical levels, it does not imply that technology 

alone can handle this variability. For a human worker, 

tasks become increasingly concurrent - the variety and 

inter-dependency of technical and logistical tasks, both in 

terms of their location and activities, is higher, 

demanding not only explicit but also tacit knowledge. As 

fewer workers tend to more and more machines, mobility 

and task switching is necessary.  

2.2 System Complexity and Variability of 

Information Interaction 

There seems to be no one definition of complexity, 

nonetheless, complexity in the industrial domain has 

drawn a large amount of research. According to El 

Marghay et al. [12], the complexity of any system 

manifests itself in functional, structural, spatial, and 

temporal domains. Lee and Wieringa [13] identify the 

shaping factors for process and control system 

complexity, and list three factors – variety (of), number 

(of) and links (between) components, loops, variables, etc. 

A CPPS thus exhibits complexity in all four core domains 

of any computational system - function, structure, space 

and time. 

The role of HMI in reducing perceived complexity 

has been previously studied in [14]. However, how this 

variety can be achieved by human workers is not possible 

by just implementing individual applications on different 

devices, since the situation in which the workers find 

themselves changes the kind of information they look for 

[15]. The structural ambiguity of complex tasks tends to 

place a higher cognitive and informational demand on the 

worker, based on the individual experience and 

knowledge [16]. Further, the level of a-priori 

determinability of a task’s information requirements 

shapes how one searches for information – as complexity 

increases, the number of sources increases, while their 

specificity reduces [17]. 

2.2.1 Summary 

To recap, a CPPS is characterized by its 

compositional and informational variety, as well as the 

sequential and parallel flow of information within these 

spatially and temporally distributed components. The 

effect of this variety is not seen at a component level, but 

at a system level as errors and breakdowns due to 

unexpected disturbances. Tasks are spatially and 

informationally diverse, coupled with sources of 

information and actuation. To handle complexity, 

workers need to gather information from different 

sources. 

A conventional approach to assistance based on 

desktop or mobile applications is only sufficient in cases 

where information needs are a-priori determinable. As an 

example, it has been demonstrated time and again, in 

various studies, that help manuals in desktop applications 

are rarely used [18] [19]. The cited reason is that software 

designers can hardly anticipate the myriad combinations 

of how, why, what and where am I questions that users 

ask during application use [20]. The context of assistance 

is therefore intimately tied to the nature of work, or 

activities, that users perform, instead of the designed 

application workflow. 

3 From Applications to Activities 

A review of industry 4.0 literature reveals that the 

focus hitherto has been on developing digital applications 

[21]. The area of human machine interaction in this 

respect has only recently been explored, where assistance 

is limited to a single interactive device with assembly or 

maintenance manuals, usually coupled to a particular 

workstation or a task [22]. Multi-device and multi-activity 

assistance is a field yet to be explored in the industrial 

domain; at the time of writing this paper, no such 

framework for industrial work assistance has been found 

in our literature review. 
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In section 2, we discussed that the nature of work in a 

CPPS is distributed and informationally diverse. While 

situated, task-based applications offer assistance in their 

own context, combining and switching between multiple 

activity contexts demands a higher-level view of human 

activity. One of the prominent fields in HCI research that 

puts activity at its core is activity-centric computing [23], 

discussed in the next section.  

3.1 Activity Centric Computing 

Bardram et al. [23] define the following principles of 

activity-centric computing: 

a) Activity-Centered - A ’Computational Activity’ 

collects in a coherent set a range of services and data 

needed to support a user carrying out an activity. 

b) Activity Suspend and Resume - A user can suspend, 

resume and alternate between activities. Resuming an 

activity should bring forth the data and services 

needed for that activity. 

c) Activity Roaming - An activity supports distribution, 

such that it can be suspended on one device and 

resumed on another. 

d) Activity Adaptation - An activity adapts to the 

resources available on the device on which it is 

consumed. 

e) Activity Sharing - An activity is shared among 

collaborating users, such that a participant can resume 

an activity and continue the work of another user. 

f) Context Awareness - An activity adapts itself to the 

user’s constraints as defined by the availability of 

resources in the proximity. 

 

The notion of an activity comes from activity theory, 

introduced by Leontiev [24], who proposes that an 

activity is what links any subject, human or non-human, 

to objects in the world in which this subject exists. An 

activity is seen as a three-level hierarchy, shown in Fig. 

1. At the highest level, an activity accomplishes a motive 

by reflecting on an object. An activity can be 

differentiated from another only when it is intended 

towards a different object. At the second level, actions 

are carried out to realize conscious goals. At the third and 

final level, actions are accomplished by means of 

subconscious operations which are internalized patterns 

of behavior acquired through learning or social 

interactions [25]. Operations are affected by the 

conditions in which they are carried out. Although a 

hierarchal relationship between activity, action and 

operation exists, they are not fixed in their relationship to 

one another. For example, learning to type using a 

keyboard is in the beginning an activity, which over time, 

turns into an operation. Conversely, a breakdown [26] 

forces us to consciously view operations as activities, for 

example when the keyboard stops responding.  

 

Figure 1. Activity hierarchy, taken from [24]. 

In activity theory, human activities between a subject 

and an object are always mediated via tools or artefacts 

[27], as shown in Fig. 2. In other words, we act on objects 

through tools and artefacts, and in a complex activity 

system, numerous varieties of mediating artefacts may be 

involved. Wartofsky [28] distinguishes between primary 

artefacts and secondary artefacts, the former being the 

most obvious in everyday operations, for example tools, 

while the latter being representations of tools as well as 

plans, official- documents, explanatory models and notes. 

 

Figure 2.  Activity Mediation as conceptualized 

by Vygotsky [27]. S, O and A refer to subject, 

object and artifact, respectively. 

While activity centric computing has been used to 

design frameworks for supporting office work, it has not 

yet been used in the industrial domain. The next section 

develops a conceptual model that allows us to view a 

CPPS through an activity-centric perspective. 

3.2 Activity Centric CPPS, or ACCPPS 

Zamfirescu et al. [29] adopt a human-centric 

approach in defining a CPPS architecture for a smart 

factory, shown in Fig. 3. 

 
Figure 3. Anthropocentric CPPS model, from [29]. 

A CPS is divided into three constituent components: 

the physical component (PC), the cyber/computational 

component (CC) and the human component (HC). Each 
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of these components is connected outside the CPPS to a 

specific physical, computational and social dimension. 

Adapters transfer information between pairs of these 

components. From an engineering perspective, the CC 

and PC are separate components, but by adopting an 

activity-centric perspective, the CC and the PC are the 

mediating artefact and the object of the same activity. 

The mediating nature of the adapters becomes clearer 

when one turns the model ’inside out’, and replaces the 

HC, CC and PC in a CPPS by their activity centric 

counterparts, as shown in Fig. 4. In this model, an 

interactive artefact, AI allows the user to interact with the 

CC, whereas the PC is at the receiving end of the action. 

 

Figure 4. Activity-centric CPPS, based on Fig. 3 

Adopting this model allows us to imbue objects and 

artefacts with spatial and interactive properties, thereby 

allowing activities to be distributed across objects and 

devices. However, the availability of a CC on different 

devices is dependent on the properties of the device, as 

discussed in the next section. 

3.2.1 Interaction Coupling 

As mentioned in section 3.1, one of the main tenets of 

activity-centric computing is to manage the services and 

data needed to support a user carrying out an activity and 

to adapt it to the device on which it is consumed. 

However, with so many different devices at our disposal, 

we also need to manage the relationship between the 

device and the data and services it accesses at run time. 

If we take into consideration the fact that actions are 

afforded [30] by artefacts, user action can be digitally 

afforded or prompted via informational cues [31] on 

interactive artefacts. An action results in a feedback that 

the user receives directly through the object or mediated 

via the artefact. The artefacts mediate an intentional act 

of the user accomplishing a goal, while the feedback aids 

in reflection on the result of this consciously performed 

act [32]. 

This coupling can be better understood by leveraging 

the human-artefact model, developed by Bødker and 

Klokmose [33]. In this model, an artefact possesses both 

instrumental and operational capabilities. An artefact 

instrumentalizes action by helping the user achieve a goal 

and operationalizes it by virtue of its physical abilities. 

In other words, an interactive device can be characterized 

by what it affords, and how it affords it. Goumopoulos et 

al. [34] use the term properties for the physical and 

informational capabilities of a device. For use in an 

ACCPPS, the instrumental nature of interactive devices 

signifies their functionality, whereas properties such as 

form factor, ergonomics, modalities are all operational 

properties. Table 1 lists the instrumental and operational 

capabilities of commonly use interactive devices. These 

properties allow a matching of a resource or a service to 

a corresponding device on runtime. 

 

Table 1. Instrumental and operational capabilities of 

interactive artefacts. 

3.2.2 Activity Context 

In a multi-device scenario, each interactive artefact 

may be delegated a different role, that is, to act as a 

mediator for different services, resources, feedback, or 

action, depending on its instrumental and operational 

capabilities. Further, each device may have both unique 

and shared resources, allowing both specialization and 

redundant modes of interaction [35]. A tablet may for 

example, be used to search for information due to its 

visual capability, whereas a smartwatch can be used to 

deliver feedback due to its proximity to the human body. 

Several devices and interaction possibilities may be 

prioritized in terms device preference and availability. 

The concept of an activity context encapsulates this 

relationship between the action, feedback and resources 

assigned to each device, as summarized in Table 2.  

 

Table 2. Multi-device, single-user activity context 

For a multi-device, multi-user scenario, sharing and 

modification of resources, along with per user 

configurations of action and feedback mediation need to 
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be considered, as shown in Fig. 5. How MiWSICx 

mediates different activity contexts is explained in the 

next section. 

 

Figure 5. Multi-device, multi-user activity context 

4 MiWSICx 

As a middleware managing activities in an ACCPPS, 

MiWSICx manages the following tasks: 

a) allow devices to discover a MiWSICx node; 

b) communicate with these devices over various 

channels; 

c) provide access to resources and services; 

d) communicate with CPPS objects through various 

protocols; 

e) support activity-centric computing for multiple 

users and on various devices; 

 

The architecture of MiWSICx is composed of two 

core abstractions: the structural abstraction from which 

data structures are derived, and the MiWSICx 

communication protocol. MiWSICx is thus platform 

agnostic and is designed to be deployed across different 

machines as nodes in both horizontal and vertical 

configurations, as shown in Fig. 6. 

 

Figure 6. MiWSICx node configurations 

4.1 Design 

A detailed ontology of the activity entities in 

MiWSICx is given in Fig. 7. Similar ontologies have 

been developed by Bardram [36] and Moran et al. [37], 

but the ontology model used in MiWSICx differs from 

these ontologies in two ways. First, to adapt to a CPPS it 

realizes the concept of an object as something that is 

subject to a change of state as a result of user action and 

adaptive to this change, and second, it introduces the 

resource as a facilitator of this change of state.  

 

Figure 7. MiWSICx core ontology 

In MiWSICx, an activity consists of users, artefacts 

and resources. As noted in section 3.1, the subject, or the 

user, is the source of an activity, and has motives and 

goals that are accomplished via actions afforded by 

resources. The user may rely on different modes of skills, 

rules and knowledge-based behavior [38], and therefore 

has an adaptable information need met by multiple 

devices and resources. An activity supports actions for 

activity management, for example, starting, suspending 

and pausing and switching an activity. 

An artefact, or a device, is what mediates user action. 

It is uniquely identified by its description, name and 

location. Most digital devices support various modalities 

and communication interfaces, or capabilities through 

which they can exchange information. An activity can 

contain more than one such device. Artefacts use 

resources to support interactivity, and a resource points 

to objects which needs to be uniquely identifiable and 

locatable, both physically and/or digitally. Depending on 
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its properties, an object has a state that can be changed, 

either via the artefact, or by direct manipulation. 

The entity structure in MiWSICx follows a 

combination of both composition and aggregation style, 

as shown in Fig. 8. At the top of the hierarchy sits the 

activity context entity which aggregates different 

activities for a user. One user is associated with one 

activity context per MiWSICx node. An activity context 

is a persistent entity that can be saved and reloaded when 

a user logs out and logs back in on a MiWSICx node. 

 

Figure 8.  Core entities in MiWSICx 

An activity consists of resources currently under use 

along with the devices a user is interacting with. Devices 

are not directly saved with the activity or the activity 

context but are added to the activity each time a new 

device connects. The intention behind this is to stay 

adaptive to the contextual constraints in an environment. 

A resource contains one or more objects. An object 

can, further be represented by a resource, leading to a 

recursive data structure. Whether or not an object is able 

to respond to changes to its state is made explicit in its 

capabilities, which determines if a feedback is available. 

The action entity appears along with almost every 

entity, for just like the activity hierarchy in activity theory, 

different entities support corresponding actions.  

An activity context supports actions to process user 

login and switching between different activities. An 

activity entity supports switching between different 

resources and their corresponding assignment to devices. 

Resources support actions that are geared towards 

providing a service as a change in the resource itself or 

its underlying objects states, for which the objects also 

need to support actions themselves. 

4.2 Basic Entities and Types 

An entity is fully described by a combination of basic 

entities, as described below: 

• when: describes a point in time, in the form of a 

timestamp in combination with a timeout value. 

• where: describes a location in space, consisting of a 

reference point, and a relative coordinate. A where 

object also contains a representation for this point in 

space, for example in the form of an image. 

• representation: contains additional information about 

an entity that is helpful in representing this entity via 

some modality. A representation consists of either a 

text description, or a resource. 

• identity: consists of a name and/or a unique identity 

number. 

In addition, the following types are used to categorize 

different entities: 

• feedback direction: differentiates between an input 

and output modality. 

• feedback modality: describes different forms of 

modalities that a device or object supports. 

• resource type: common types of resources such as 

Images, 3D objects, files and URLs. 

• object type: distinguishes between a physical or a 

virtual object. 

4.3 Events 

Between different activity components, the 

abstraction that suitably covers conveying prompts and 

actions is that of an event. An event is an occurrence- it 

signals that something has happened in the real world or 

in some other system [39]. Event attributes are briefly 

described as follows: 

• id: represents a unique id that the message is assigned 

when created. This can serve as a reference for further 

use if the event processing is not stateless. 

• when: each event needs a timestamp and an 

associated timeout interval. 

• event type: differentiates between event types. 

• payload: the payload in an event can be constructed 

out of any specification capable of transmitting 

objects, such as JSON or XML. MiWSICx uses JSON 

payloads. 

• source: refers to the sender of the event. 

• sink: refers to the target, either in the form of a device, 

or can describe a path, similar to a REST endpoint. 

• priority: some events, for example alarms, may carry 

a higher priority than other messages.  
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4.4 Actor Model 

In section 2.1, the need for adopting a better 

abstraction for handling concurrency and distribution 

was highlighted. The conventional approach for 

modelling such a distributed middleware is by 

programming multiple threads or processes in the context 

of an application, where computation is separated from 

communication. Thus, a typical distributed application 

consists of some sort of communication framework, 

either a broker-based architecture such as Data 

Distribution Service (DDS), MQTT or ZeroMQ, or a 

service-based architecture such as SOAP or REST 

pattern, in conjunction with the core data processing 

application. 

In reality, multi-threading puts serious limitations in 

the way of achieving its goal [40], the most significant 

being the need for data invariance, which has three 

implications for concurrent and/or distributed systems. 

First, locking threads makes them wait for access to 

shared resources. Second, such locking is hard to achieve 

on distributed systems. Third, parent threads delegating 

work to multiple child threads cannot handle exceptions 

in child threads, since any exceptions that occur are local 

to a thread, and the parent is unaware of issues on the 

child thread. In addition, thread synchronization on 

multi-core processors is a surprisingly expensive 

operation, and it becomes worse as a problem is broken 

down into multiple, smaller, synchronized tasks [41]. 

For managing dynamic activity contexts, using 

multiple applications in the form of micro-services and 

service-oriented architectures is a second option, 

however, it does not come without its drawbacks. 

Maintaining interoperability of several different services 

can be a challenging task, further, the more distributed 

the services are, the more complex they are to develop 

and maintain owing to their distributed nature [42].  

The actor model is proposed as a replacement that 

mitigates the drawbacks of threads and service-oriented 

architectures, while at the same time staying distributed, 

concurrent and resilient. It was proposed in 1973 as a 

mathematical theory of computation that treats actors as 

the universal primitives of concurrent digital 

computation [43], and was developed further by Agha 

[44]. An actor is a computing abstraction, an entity that 

contains a local, immutable state; does not share this local 

state with other actors; and is responsible for updating is 

local state. 

The word actor emphasizes the design principle of 

separation of concerns. Each actor only performs a single 

job. Structurally, in an actor model, systems comprise of 

concurrent, autonomous entities, called actors and 

messages. An actor requires an immutable name or an 

address to send messages to it, and actors communicate 

exclusively by sending asynchronous messages to one 

another [44], as shown in Fig. 9.  

The structural and functional constraints on actors 

result in the following behavioral properties [45]: 

  

• Encapsulation: An Actor cannot access the state of 

other actors, nor can actors share states. The 

possibility of race conditions or shared data state 

corruption is avoided. 

• Fair Scheduling: Messages are guaranteed to be 

eventually delivered to destination actors, and 

consequently, no actors are starved of resources. 

• Location Transparency: The actual location of an 

actor has no bearing on its name. An actor could be 

on the same core, on the same CPU, or on a different 

node on a network. 

• Mobility: Actors can be updated and moved across 

different nodes individually, and an Actor Model can 

be reconfigured for load balancing and fault tolerance. 

This is different from typical OOP applications where 

the entire application must be compiled and deployed. 

 

These properties consequently facilitate the 

processing of requests and events coming from multiple 

devices, all of which may belong to the same activity and 

may compete for resources. Actors handling 

communication with devices can react to messages, while 

instantiating and delegating problems to other actors. 

 
Figure 9. Actor model, taken from [42]. 

4.5 Actors in MiWSICx 

Designing with actors usually means the software 

must be constructed in accordance with the principle of 

separation of concerns, thus each actor performs a single 

task. The following sections elaborate the various actors 

created in MiWSICx, shown in Fig. 10. 

4.5.1 Core Actors 

The root or top-level actor in MiWSICx is referred by 

the same name. Its job is to startup the MiWSICx base 

system, which consists of a comms actor, the resource 

manager actor, the activity context manager actor and 

the discovery actor. All the actors are informed of each 
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other’s actor addresses at startup. Upon shutdown, the 

MiWSICx actor sends an exit message to all the child 

actors, who are then responsible for shutting down their 

respective child actors. 

A device can join MiWSICx depending on its 

capability. Camera enabled devices can use QR codes to 

scan and obtain the IP address, and devices without this 

capability can communicate with a Bluetooth or NFC 

sensor. Another way is to use UDP broadcast for 

exchanging the address of the MiWSICx endpoint, but 

with several nodes broadcasting in the vicinity the user 

will have to choose from a list of nodes. Once a device 

knows the IP Address, it can communicate further by 

establishing a connection to the TCP server on the 

Comms Actor. Access to CPPS objects and other 

MiWSICx nodes in the network is maintained by the 

extern comms actor. Supporting user activities in the 

form of activity templates, plans and resources is handled 

by the resource manager actor. 

Second tier actors may decide to start child actors. 

For example, the resource manager can create service 

provider actors that provide data analytics, and the 

external comms actor may start an actor that 

communicates with the CPPS hardware through ModBus 

or OPC-UA. etc, allowing the system to configure itself 

based on the desired needs and capabilities of the 

background CPPS. 

 

Figure 10. Actors in a MiWSICx node. 

 

4.5.2 Device Handlers 

When a device connects to a MiWSICx node, it needs 

to announce its capabilities to the corresponding comms 

actor, which then creates a device handler actor that 

takes care of all further communication with this device. 

Once the device disconnects, the corresponding device 

handler actor is also destroyed.  

 

Figure 11. Device handler actors. 

Device handlers also act as event filters. For example, 

when a feedback event is sent to a device handler, it can 

decide based on its capability if it will forward the 

message to the device, and if yes, how to best represent 

this event. 

4.5.3 Activity Context Actor 

An activity context is started when a user logs in on a 

particular device. First, the activity context manager 

directs the request to the resource manager, which 

searches for an existing context for this user. In case no 

context is found, a new activity context handler is created 

for the user. Any subsequent device connections with the 

same user name will be directly added to the same 

activity context handler. 

The activity context actor itself is responsible for 

routing messages within the context of a user activity and 

contains a composite entity. The state of devices, for 

example, in an activity context is handled by the device 

handler actor, and the resources themselves are handled 

by the resource handler actor. 

Once an activity context is created, the user has 

access to the services and resources available for either 

restoring previously paused activities or creating new 

ones. As new users connect, each user is assigned a new 

activity context handler, and upon logging out, the 

activity context is saved by the resources manager. 

Sharing activities means assigning more than one user to 

a context. Any changes made by one user are visible to 

the other user as well. 

4.5.4 MiWSICx Messaging Protocol 

Within MiWSICx, events are transmitted as actor 

messages, but for transmitting events to and from devices, 

a messaging protocol is needed. The MiWSICx 

messaging protocol is adapted from HTTP and is divided 

into a header and payload. The header contains the event 

attributes as presented in section 4.3, while the payload 

contains information regarding the activity at hand. 

 

4.5.5 Deployment 

MiWSICx is written in Python and uses “The 

Thespian Actor Framework” [46]. Python was chosen 

because of its cross-platform compatibility, its dynamic 

typing system, and its rich repertoire of stable libraries.  

Nonetheless, there are several actor frameworks 

available in various languages which can be chosen based 

on technical and functional requirements. MiWSICx as 

such does not rely on one language or library, allowing it 

to run on a variety of hardware platforms. 

5 Conclusions 

The traditional approach to HCI in industrial contexts 
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as an interface between man and machine needs to be 

rethought in the form of human activity and how it flows 

within different places and devices at various times on 

the manufacturing floor. Problem solving as such cannot 

be modelled as a predetermined division of roles between 

the man and the machine; rather, the context of work 

needs to be rethought as that of activities composed of 

the human worker, his/her artefacts as devices and 

informational resources, and the objects that are the 

recipients of this activity. This shift in perspective allows 

for design of systems that are adaptable and extensible by 

the human workers themselves as their own creative 

problem-solving tools. One approach to system design is 

in the form of a middleware, and MiWSICx is the first 

such middleware that implements such a design for 

supporting work in industrial contexts.  

A CPPS consists of a mixture of both networked and 

non-networked components distributed in a spatial and 

temporal manner, hence the framework for work support 

also needs to be distributed. A high level of 

responsiveness in handling multiple users, activities and 

devices simultaneously means that an efficient 

concurrency framework is needed, one that preferably 

avoids the drawbacks of thread-based approaches. The 

Actor Model is hence used as the foundation for the 

development of MiWSICx, which is a generic framework 

that can be deployed using any underlying Actor 

implementation. By modelling the constituents of human 

activity - users, devices, resources and objects, MiWSICx 

manages activities across various device configurations, 

which are established via operational and instrumental 

properties of devices. 
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