

Modulhandbuch

Energietechnologie (BPO 20)

Technische Hochschule Ostwestfalen-Lippe Fachbereich Maschinenbau und Mechatronik Campusalle 12 32657 Lemgo

Stand: 25.07.2019

Elektrotechnik

Modulbezeichnung:	Elektrotechnik
Lehrveranstaltung:	Elektrotechnik
Kurzzeichen:	MEL
Fachnummer:	6000
Semester:	Maschinentechnik (BPO 11), 3. Semester
	Zukunftsenergien (BPO 13), 3. Semester
	Zukunftsenergien (BPO 08), 3. Semester
	Maschinenbau (BPO 17), 3. Semester
	Virtuelle Produktentwicklung (BPO 20), 5. Semester
	Energietechnologie (BPO 20), 3. Semester
Modulbeauftragte/r:	Prof. DrIng. Jian Song
Dozent/in:	Prof. DrIng. Jian Song
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul
	Zukunftsenergien (B.Eng.), Pflichtmodul
	Energietechnologie (B.Eng.) Pflichtmodul
	Virtuelle Produktentwicklung (B.Sc.) Wahlpflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
Lernergebnisse /	Die Studierenden kennen die grundlegenden Gesetze der Elektrotechnik und
Kompetenzen:	können sie bei Auswahl und Einsatz von Messgeräten und elektronischen
	Komponenten anwenden. Die Funktionsweise und betrieblichen Eigenschaften
	elektrischer Maschinen sind ihnen vertraut.
Inhalte:	Die Vorlesung befasst sich mit den Grundlagen der Elektrotechnik:
	den physikalischen Grundlagen
	der elektrischen Messtechnik
	der elektronischen Komponenten
	den elektrischen Maschinen
Studien-/ Prüfungsleistungen:	Klausur, 120 Minuten oder mündliche Prüfung, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Folien, Skript (Powerpoint, PDF)
Literatur:	Hering, E. u.a.: Elektrotechnik für Maschinenbauer, Springer Berlin 1999.
	Linse, H.: Elektrotechnik für Maschinenbauer, B.G. Teubner, Stuttgart, 1992.
	Flegel, G. u.a.: Elektrotechnik für Maschinenbau und Mechatronik, Hanser,
	München 2004
Text für Transcript:	Electrical Engineering
	Physical fundamentals, Electrical measuring methods, Electronic components;
	Electric machines and sensors

Werkstoffkunde 1

Modulbezeichnung:	Werkstoffkunde 1
Lehrveranstaltung:	Werkstoffkunde 1
Kurzzeichen:	MWK 1
Fachnummer:	6013
Semester:	Virtuelle Produktentwicklung (BPO 20), 1. Semester
	Energietechnologie (BPO 20), 1. Semester
Modulbeauftragte/r:	Prof. Dr. rer. nat. Andreas Niegel
Dozent/in:	Prof. Dr. rer. nat. Andreas Niegel
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Virtuelle Produktentwicklung (B.Sc.) Pflichtmodul
	Energie (B.Eng.) Pflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	120 h davon 60 h Präsenz- und 60 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
Lernergebnisse /	Die Studierenden kennen Aufbau und Eigenschaften kristalliner und amorpher
Kompetenzen:	Werkstoffe, können deren Zustandsdiagramme interpretieren. Sie können
	geeignete Werkstoffe für Konstruktionen auswählen bzw. werkstoffgerecht
	konstruieren. Sie kennen die Grundlagen von Reibung/Verschleiß,
	Bruch/Ermüdung sowie Oxidation/Korrosion und sind in der Lage, Fachgespräche
	mit Werkstoffspezialisten zu führen.
Inhalte:	Die Vorlesung behandelt die Grundlagen der Metall und Werkstoffkunde.
	Angefangen vom Aufbau kristalliner und amorpher Stoffe, den Eigenschaften der
	Materialien bis hin zu den Zustandsschaubildern werden Grundlagen vermittelt.
	Thermisch aktivierte Vorgänge werden ebenso behandelt wie die Grundlagen von
	Reibung/Verschleiß, Bruch/Ermüdung sowie Oxidation/Korrosion.
Studien-/ Prüfungsleistungen:	Klausur 1 h, benotet
	Die Note entspricht der Note für das Modul.
Medienformen:	Folien-Powerpoint, PDF / CD-interaktive Lernprogramme
Literatur:	Werkstoffkunde: Bargel/Schulze/Springerverlag 2000
	Werkstoffkunde-Werkstoffprüfung: Weißbach/ Vieweg 1998
Text für Transcript:	Materials Science 1
	Lecture: classification of materials (metals, ceramic polymers,) structure and
	symmetry of crystalline solids, crystalline imperfections, mechanical properties of
	metals; dislocations and strengthening mechanisms, testing of materials (non
	destructive testing); failure (fracture mechanics and fatigue, wearing mechanisms,
	corrosion processes of metals), qualitative and quantitative metallographic;
	diffusion in solids, phase diagrams and phase transformations and their
	interpretation.
	Exercises: The lecture is illustrated by exercises on calculations

Werkstoffkunde 2

Modulbezeichnung:	Werkstoffkunde 2
Lehrveranstaltung:	Werkstoffkunde 2
Kurzzeichen:	MWK 2
Fachnummer:	6014
Semester:	Maschinentechnik (BPO 11), 2. Semester
	Mechatronik (BPO 11), 2. Semester
	Zukunftsenergien (BPO 08), 2. Semester
	Maschinenbau (BPO 17), 2. Semester
	Mechatronik (BPO 17), 2. Semester
	Virtuelle Produktentwicklung (BPO 20), 2. Semester
	Energietechnologie (BPO 20), 2. Semester
Modulbeauftragte/r:	Prof. Dr. rer. nat. Andreas Niegel
Dozent/in:	Prof. Dr. rer. nat. Andreas Niegel
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul (2. Semester)
	Mechatronik (B.Sc.), Pflichtmodul (2. Semester)
	Zukunftsenergien (B.Eng.), Wahlpflichtmodul (4. Semester)
Lehrform / SWS:	Vorlesung / 2 SWS
	Praktikum / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
Tomiuminovorausseizungen.	Empfohlen: Werkstoffkunde 1
Lernergebnisse /	Die Studierenden kennen die Wärmebehandlungsmethoden von Stählen und die
Kompetenzen:	daraus resultierenden Eigenschaften dieser Werkstoffe. Sie kennen die
	Eigenschaften und Einsatzmöglichkeiten metallischer und nichtmetallischer
	Werkstoffe.
	Sie kennen die in der Praxis angewendeten Methoden zur zerstörenden bzw.
	zerstörungsfreien Werkstoffprüfung, können entsprechende Prüfgeräte bedienen
	und Versuche durchführen sowie die Ergebnisse interpretieren.
Inhalte:	Aufbauend auf den Grundlagen der Werkstoffkunde 1 erfolgt eine
	anwendungsorientierte Werkstoffkunde:
	Wärmebehandlung der Stähle, Glüh- und Härteverfahren. Eisengusswerkstoffe,
	Nichteisenmetalle sowie nichtmetallisch anorganische Werkstoffe und Polymere.
	Im Praktikum werden wichtige Grundlagenversuche aus der zerstörenden und
	nicht zerstörenden Werkstoffprüfung durchgeführt.
Studien-/ Prüfungsleistungen:	Klausur 1 h, benotet. Ausarbeitung von Praktikaberichten.
3	Die Note entspricht der Note für das Modul.
Medienformen:	Folien-Powerpoint, PDF / CD-interaktive Lernprogramme
Literatur:	Werkstoffkunde: Bargel/Schulze/Springerverlag 2000
	Werkstoffkunde-Werkstoffprüfung: Weißbach/ Vieweg 1998
	Technologie der Werkstoffe: Ruge/Wohlfahrt / Vieweg 2002
Text für Transcript:	Materials Science 2
	Lecture: classification of heat treatments (thermal and thermo chemical methods);
	steel and cast iron (technological properties, changes in properties by different
	heat treatment technologies), nonferrous metals and alloys, strengthening
	methods (structural hardening, precipitation hardening, cold deformation),
	standardization of materials; characteristics, application and processing of
	ceramics, polymers and composites.

Grundlagen Messtechnik

Modulbezeichnung:	Grundlagen Messtechnik
Lehrveranstaltung:	Grundlagen Messtechnik
Kurzzeichen:	MMT
Fachnummer:	6017
Semester:	Zukunftsenergien (BPO 13), 3. Semester
	Zukunftsenergien (BPO 08), 3. Semester
	Virtuelle Produktentwicklung (BPO 20), 5. Semester
	Energietechnologie (BPO 20), 3. Semester
Modulbeauftragte/r:	Prof. DrIng. Kiesel
Dozent/in:	Prof. DrIng. Kiesel
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	empfohlen: Kenntnisse aus Mathematik 1-4, Technische Mechanik 1-3,
Tomiaimievoradocotzangon.	Elektrotechnik
Lernergebnisse /	Die Studierenden kennen Aufbau und Funktionsweise von Messgeräten zur
Kompetenzen:	Bestimmung mechanischer und verfahrenstechnischer Messgrößen. Sie kennen
Kompetenzen.	alternative Messmöglichkeiten mit ihren Vor- und Nachteilen und können auf
	Grund dessen geeignete Komponenten auswählen. Sie sind in der Lage,
	Messergebnisse auszuwerten und zu beurteilen.
Inhalte:	Vorlesung/Übung:
innaite.	
	- Maßeinheiten, statische Messfehler, systematische und zufällige Fehler
	- Fehlerfortpflanzung, Messgerätedynamik, Signalübertragung,
	Messwertverarbeitung
	- Sensoren für geometrische Messgrößen (Länge, Winkel)
	- Sensoren für mechanische Beanspruchungen (Kraft, Drehmoment)
	- Sensoren für Drehzahl, Geschwindigkeit, Beschleunigung
	- Sensoren zur Temperaturmessung
	- Sensoren zur Erfassung von Strömungsgeschwindigkeit, Durchfluss und
	Massenstrom
	- Korrelationsmesstechnik
	Praktika: Praxisnahe messtechnische Versuche in kleinen Gruppen, z.B.:
	- Dynamisches Auswuchten von Rotoren
	- Kalibrierung eines Kraftaufnehmers
	- Untersuchung von Brückenschaltungen
	- Ontersuchung von Brückenschaltungen - Drehzahlmessung
	- Schwingungsuntersuchung eines eingespannten Balken
	- Schwingungstechnische Untersuchungen – Schwingprüfung
Ohiolian / Dullfuranal status	- Signalanalyse
Studien-/ Prüfungsleistungen:	Klausur, 120 Minuten
N. 11. 6	Die Note entspricht der Note für das Modul.
Medienformen:	Beamer, Tafel, Skript, E-Learning, Rechnereinsatz

Literatur:	oJ. Hoffmann: Handbuch der Messtechnik, 4. Aufl., Hanser München, 2012
	oJ. Hoffmann: Taschenbuch der Messtechnik, 7. Aufl., Hanser München, 2015
	oR. Parthier: Messtechnik, 8. Aufl., Springer Berlin Heidelberg, 2016
	oHR. Tränkler, G. Fischerauer: Das Ingenieurwissen - Messtechnik, Springer
	Berlin Heidelberg, 2014
	oT. Mühl: Einführung in die elektrische Messtechnik - Grundlagen,
	Messverfahren, Anwendungen, 4. Aufl., Springer Wiesbaden, 2014
	oE. Schrüfer u.a.: Elektrische Messtechnik - Messung elektrischer und
	nichtelektrischer Größen, 11. Aufl., Hanser München, 2014
Text für Transcript:	Fundamentals of Measuring Technique
	System of units, errors of measuring components, dynamic behaviour of
	measuring components, transduction of measuring signals, sensors of geometric
	quantities, sensors of mechanical action, sensors for speed, velocity,
	acceleration, temperature measurement, fluid flow sensors, correlation
	measurement

Elektromechanische Antriebstechnik

Modulbezeichnung:	Elektromechanische Antriebstechnik
Lehrveranstaltung:	Elektromechanische Antriebstechnik
Kurzzeichen:	MAT
Fachnummer:	6026
Semester:	Mechatronik (BPO 20), 4. Semester
	Maschinenbau (BPO 20), 4. Semester
	Virtuelle Produktentwicklung (BPO 20), 4. Semester
	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. DrIng. Kiesel
Dozent/in:	Prof. DrIng. Kiesel
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Wahlpflichtfach
	Energietechnologie (B.Eng.) Pflichtmodul in der Studienrichtung
	Fluidsystemtechnik
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	empfohlen: Kenntnisse aus Mathematik 1-4, Technische Mechanik 1-3,
remianinevoraussetzungen.	Maschinenelemente 1-3, Elektrotechnik
Lernergebnisse /	Die Studierenden kennen die Elemente industrieller Antriebe. Sie haben die
Kompetenzen:	Kompetenz, industrielle Antriebssysteme sachgerecht auszuwählen und zu
Kompetenzen.	dimensionieren. Die Studierenden bestimmen selbstständig die Leistungsfähigkeit
	von Antriebssystemen.
Inhalte:	Elemente der industriellen Antriebstechnik und Aktorik, ihr Leistungsvermögen,
innate.	ihre Besonderheiten und ihre Einsatzbereiche. Dimensionierung von Antrieben
	und ihren Elementen nach den gegebenen Leistungsanforderungen,
	Bewegungsabläufen und weiteren Randbedingungen. Beispiele von
	Antriebsauslegungen industrieller Systeme. Simulationsrechnungen von Antriebssystemen.
Studion / Drüfungsleistungen:	,
Studien-/ Prüfungsleistungen:	Klausur (120 Minuten) oder mündliche Prüfung
Madianfarman	Die Note entspricht der Note für das Modul.
Medienformen:	Beamer, Tafel, Skript, E-Learning, Rechnereinsatz
Literatur:	oP. Brosch: Praxis der Drehstromantriebe, Vogel-Verlag Würzburg, 2002
	oW. Böhme: Elektrische Antriebe, 7. Aufl., Vogel-Verlag Würzburg 2007
	oM. Schulze: Elektrische Servoantriebe, Hanser München, 2008
	oE. Kiel: Antriebslösungen - Mechatronik für Produktion und Logistik, Springer
	Berlin Heidelberg, 2007
	oF. W. Garbrecht: Auswahl von Elektromotoren, VDE-Verlag Berlin, 2008
	oW. Roddeck: Einführung in die Mechatronik, 5. Aufl., Springer Berlin Heidelberg, Vieweg, 2016
	oR. Isermann: Mechatronische Systeme – Grundlagen, 2. Aufl., Springer Berlin Heidelberg, 2008
	oR. Nordmann: Maschinenelemente-Skript - Block A Vorlesungen: Mechatronik
	und Maschinenakustik, 2. Aufl., Shaker Aachen, 2002

Modulhandbuch Fachbereich Maschinenbau und Mechatronik, TH-OWL

Text für Transcript:	Drive Systems and Components
	Industrial electromechanic drive systems, typical applications and special
	requirements. Characteristics of typical drive elements: Motors, gearings, beltand
	chain drives, couplings, linear drives, actuators. Calculation of loads in static and
	dynamic drive applications. Selection and dimensioning of drive components.

Strömungsmaschinen

Modulbezeichnung:	Strömungsmaschinen
Lehrveranstaltung:	Strömungsmaschinen
Kurzzeichen:	MSM
Fachnummer:	6032
Semester:	Maschinentechnik (BPO 11), 4. Semester
	Zukunftsenergien (BPO 13), 4. Semester
	Zukunftsenergien (BPO 08), 4. Semester
	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. DrIng. Georg Klepp
Dozent/in:	Prof. DrIng. Georg Klepp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinenbau (B.Sc.), Pflichtmodul in Studienrichtung Kraft- und
	Arbeitsmaschinen,
	Wahlpflichtmodul in allen weiteren Studienrichtungen,
	Energietechnologie (B.Eng.), Pflichtmodul in der Studienrichtung
	Fluidsystemtechnik
Lehrform / SWS:	Vorlesung / 3 SWS
	Übung / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO-M-2017: das Bestehen der Prüfungen in den Fächern Mathematik 1
_	bis 4 (Fach-Nr. 6115 bis 6118) und Technische Mechanik 1 und 2 (Fach-Nr.
	6119, 6120)
	Nach BPO-Z-2015: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Fluiddynamik, Thermodynamik
Lernergebnisse /	Die Studierenden können die theoretischen Grundlagen der Fluid- und
Kompetenzen:	Thermodynamik auf die Berechnung und Konstruktion von Strömungsmaschinen
·	anwenden. Sie sind in der Lage, einfache Maschinenkonstruktionen anzufertigen
	und Auslegungsberechnungen durchzuführen. Sie kennen das Betriebsverhalten
	von Strömungsmaschinen, können dieses beurteilen und geeignete Maschinen je
	nach Problemstellung auswählen.
Inhalte:	Bauformen und Einteilung von Strömungmaschinen Energiebilanz,
	Strömungsmaschine in der Anlage, hydraulische und thermische
	Strömungsmaschinen, Reaktionsgrad, Eulersche Turbinenhauptgleichung,
	Ähnlichkeitsgesetze, Strömung im Schaufelkanal, Verluste, Leitapparate,
	hydrodynamische Kräfte, Kavitation u. Überschallgrenze, Betriebsverhalten und
	Regelung
Studien-/ Prüfungsleistungen:	Klausur (120 Minuten) benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Kreide und Tafel, Folien, Videos, Unterlagen auf elektronischer Lernplattform
Literatur:	Willi Bohl: Strömungsmaschinen 1 und 2, Vogel
	Herbert Sigloch: Strömungsmaschinen, Hanser
Text für Transcript:	Turbomachines
	Principle of operations, control and and design, energy transfer and efficiency,
	Euler-equation, velocity triangles, blade design, cavitation, similitude

Hydraulik und Pneumatik

Modulbezeichnung:	Hydraulik und Pneumatik
Lehrveranstaltung:	Hydraulik und Pneumatik
Kurzzeichen:	MHP
Fachnummer:	6042
Semester:	Maschinentechnik (BPO 11), 5. Semester
	Mechatronik (BPO 11), 5. Semester
	Maschinenbau (BPO 17), 5. Semester
	Mechatronik (BPO 17), 5. Semester
	Virtuelle Produktentwicklung (BPO 20), 5. Semester
	Energietechnologie (BPO 20), 5. Semester
Modulbeauftragte/r:	Prof. DrIng. Heinrich Uhe
Dozent/in:	Prof. DrIng. Heinrich Uhe
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Wahlpflichtfach
Zaoranang zam Gameaiam.	Mechatronik (B.Sc.), Wahlpflichtfach
	Energietechnologie (B.Eng.) Pflichtmodul in der Studienrichtung
	Fluidsystemtechnik
Lehrform / SWS:	Vorlesung / 3 SWS
Lorinomi / Gvve.	Übung / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO-M-2017: das Bestehen der Prüfungen in den Fächern Mathematik 1
remainievoraussetzungen.	bis 4 (Fach-Nr. 6115 bis 6118) und Technische Mechanik 1 und 2 (Fach-Nr.
	6119, 6120)
	Nach BPO-T-2017: das Bestehen der Prüfungen in den Fächern Mathematik 1
	bis 4 (Fach-Nr. 6115 bis 6118) und Technische Mechanik 1 (Fach-Nr. 6119) und
	Grundgebiete der Elektrotechnik 1 und 2 (Fach-Nr. 5104 und 5105)
	Empfohlen: abgeschlossene Fächer der ersten drei Semester
Lernergebnisse /	Die Studierenden kennen den Aufbau und die Eigenschaften hydraulischer und
Kompetenzen:	pneumatischer Systeme und Systemkomponenten. Sie können die Funktionen
Trompotorizon.	existierender Anlagen analysieren und Anlagen bzw. Anlagenteile nach
	vorgegebener Sollfunktion entwerfen.
Inhalte:	Überblick, hydromechanische Grundlagen, Druckflüssigkeiten, Energiefluss,
innate.	Aufbau und Funktion der Elemente (Ventile, Pumpen, Motoren,),
	Grundschaltungen, Besonderheiten des Druckmediums Luft, Bauelement der
	Pneumatik, Drucklufterzeugung, Pneumatikschaltungen
Studien-/ Prüfungsleistungen:	Klausur, 120 Minuten oder mündliche Prüfung, benotet.
Ctaanon / Franchige is is tan igen.	Die Note entspricht der Note für das Modul.
Medienformen:	Tafel und Kreide, Folien, teilw. Unterlagen im Rahmen
	Notebook-University-Lernplattform, praktische Experimente im Labor, Videos,
	Skript
Literatur:	Will, D. / Gebhardt, N. : Hydraulik; Götz, W. : Hydraulik in Theorie und Praxis;
	Findeisen, D.: Ölhydraulik; Matthies, H.J. / Renius, K.T.: Einführung in die
	Ölhydraulik
	- ··· · · · · · · · · · · · · · · · · ·

Modulhandbuch Fachbereich Maschinenbau und Mechatronik, TH-OWL

Text für Transcript:	Hydraulics and Pneumatics
	Typical application of hydraulic and pneumatic systems, principles of hydrostatics,
	losses and efficiency of hydraulic systems, commonly used hydraulic fluids and
	their characteristics, basic arrangements of hydraulic systems, design specifics of
	hydraulic and pneumatic ele-ments, characteristics of air as working medium in
	pneumatic systems, design specifics of pneumatic systems.

Technisches Englisch

Modulbezeichnung:	Technisches Englisch
Lehrveranstaltung:	Technisches Englisch
Kurzzeichen:	MTE
Fachnummer:	6050
Semester:	Zukunftsenergien (BPO 15), 4. Semester
	Energietechnologie (BPO 20), 2. Semester
Modulbeauftragte/r:	Dr. (USA) Andrea Koßlowski-Klee
Dozent/in:	Dr. (USA) Andrea Koßlowski-Klee
Unterrichtssprache:	Englisch
Zuordnung zum Curriculum:	Maschinenbau (B.Sc.), Pflichtmodul (5. Semester)
	Mechatronik (B.Sc.), Pflichtmodul (5. Semester)
	Zukunftsenergien (B.Eng.), Pflichtmodul (4. Semester)
	Energietechnologie (B.Eng.), Pflichtmodul (2. Semester)
	Virtuelle Produktentwicklung (B.Sc.), Pflichtmodul (4. Semester)
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Grundkenntnisse der englischen Sprache in Wort und Schrift entsprechend der
	Zulassungsvorraussetzungen des jeweiligen Studiengangs
Lernergebnisse /	Lernziele: Der Kurs vermittelt und trainiert die fremdsprachliche Kommunikations-
Kompetenzen:	und Handlungsfähigkeit im Bereich der klassischen Ingenieurwissenschaften
	Maschinenbau und Elektrotechnik sowie im Bereich der Zukunftsenergien anhand
	konkreter Praxisbeispiele aus dem Arbeitsleben des Ingenieurs.
	Kompetenzen:
	Methodenkompetenz:
	- Die Studierenden besitzen die Kompetenz zur Problemerkennung und
	Problemlösung.
	- Sie erwerben Fähigkeiten im Hinblick auf das Strukturieren, das analytische,
	synthetische und konzeptionelle Denken.
	- Sie sind medienkompetent.
	Sozial- und Selbstkompetenz:
	- Die Studierenden verfügen über ein klares und sicheres Auftreten und
	Ausdrucksvermögen.
	- Sie haben die Fähigkeit, mit anderen zu kooperieren und ein Arbeitsergebnis im
	Team zu erstellen.
	Fachkompetenz:
	- Die Studierenden können die Hauptinhalte komplexer Texte zu konkreten und
	abstrakten Themen klar beschreiben und präsentieren. Dies schließt sowohl
	Fachdiskussionen in ihrer Studiengangsspezialisierung/Fachgebiet als auch die
	Fähigkeit, angemessene Schlussfolgerungen zu ziehen ein.
	- Die Studierenden können klare, differenzierte
	Texte zu einem weiten Themenspektrum produzieren und einen Standpunkt zu
	einer thematischen Fragestellung vertreten, indem sie Vorteile und Nachteile
	verschiedener Optionen darstellen und eine angemessene Schlussfolgerung
	ziehen.
	- Die Studierenden können sich so spontan und fließend verständigen, dass ein
	normales Gespräch mit Muttersprachlern ohne größere Anstrengung auf beiden
	Seiten gut möglich ist.

Inhalte:	Geübt wird erfolgreiches sprachliches Handeln in berufsspezifischen Situationen vor allem folgender Gebiete der Technik und des Ingenieurwesens: Manufacturing, Automation, Materials Technology, Technical Mechanics, Old-established, Innovative and Advanced Energies, Electricity, Telecommunications. Neuer Wortschatz wird in einem breiten, technisch relevanten Anwendungsspektrum vermittelt: Fachgespräche und Verhandlungen führen (inkl. Job Interviews), Vorträge und Präsentationen halten, einschl. Beschreibung von Graphiken, Tabellen, technischen Produkten, Produktionsprozessen, Firmenprofilen etc. Alle wichtigen Fertigkeiten und Kenntnisse werden dabei geschult: Reading, Listening, Speaking, Writing, Vocabulary, Social and Intercultural Skills. Das Leseverstehen wird durch die Lektüre authentischer Fachtexte, das Hörverstehen durch das Training von Si-tuationen aus der Berufspraxis (Zusammenfassung von Vorträgen, Anfertigung
	von Notizen etc.) verbessert. Das fachbezogene schriftliche Ausdrucksvermögen wird durch die Abfassung z.B. von Geschäftsbriefen und Berichten gefestigt. Der Kurs baut systematisch die Kommunikationsfähigkeiten auf, die in weiten Bereichen von Industrie, Wirtschaft und Handwerk benötigt werden, und basiert auf dem Grundsatz, durch die Schaffung konkreter Kommunikationsanlässe von beruflicher Relevanz die Sprachfertigkeiten der Teilnehmerinnen und Teilnehmer zielorientiert und wirkungsvoll auszubauen und zu festigen.
Studien-/ Prüfungsleistungen:	Klausur 90 Minuten, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Aktuelle Print- und Audiovisuelle Medien, Videos und Online- Sprachkursmodule für das Selbststudium
Literatur:	Ibbotson, Mark. Professional English in Use: Engineering. Cambridge University Press, 2009. Glendinning, Eric H. und Norman Glendinning. Oxford English for Electrical and Mechanical Engineering. Oxford University Press, 2001. Bauer, Hans-Jürgen. English for Technical Purposes. Cornelson & Oxford, 2000. Jajendran, Ariacutty. Englisch für Maschinenbauer: Lehr- und Arbeitsbuch. Viewegs Fachbücher der Technik, 2007. Dunn, Marian and David Howey et al. English for Mechanical Engineering. Cornelsen, 2011. Powell, Mark. Presenting in English: How to Give a Successful Presentation. Heinle, 2011. Engine-Magazine. Englisch für Ingenieure. Zeitschrift (Hoppenstedt) Eurograduate. European Graduate Career Guide 2018. Automotive Engineer. Technical Magazine. Business Spotlight. Online-Kursmaterial für Business English von digital publishing (Campus Language Training) zu den Themen Presenting, Meetings, Negotiating Material mit aktuellen Beiträgen zu technischen Themen aus Internetzeitschriften und Webseiten im Ecampus

Text für Transcript:

English for Technical Purposes

Practical examples from the business world enable students to learn the proper ways of communicating and acting in a foreign language in the fields of mechanical, electrical, and electronic engineering as well as in the different areas of advanced energies. Manufacturing, automation, materials technology, technical mechanics, energy, electricity, waves and systems, telecommunications are among the relevant topics covered. This course activates and expands technical vocabulary as well as trains the following skills: 1) reading and listening comprehension using original texts, tapes and videos 2) oral presentation of texts as well as speaking in (simulated) professional conversations 3) summarizing of articles as well as writing of short reports (e.g. production processes, company profiles etc.) and descriptions, such as graphs, tables, and technical products. In addition, the course will impart knowledge in the following areas: 1) basic English terminology in mechanical, electrical, and electronic engineering as well as in old-established, innovative and advanced energies 2) technical language of the engineering branch which is required for correspondence, negotiations and contracts 3) syntactic and stylistic features of technical texts in English. This course is a subject-related language course, not a technical lecture in English. Knowledge of engineering is a prerequisite.

Automatisierungstechnik

Modulbezeichnung:	Automatisierungstechnik
Lehrveranstaltung:	Automatisierungstechnik
Kurzzeichen:	MAU
Fachnummer:	6100
Semester:	Maschinenbau (BPO 20), 4. Semester
	Virtuelle Produktentwicklung (BPO 20), 4. Semester
	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof.in Dr. rer. nat. Petra Meier
Dozent/in:	Prof.in Dr. rer. nat. Petra Meier
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul
	Maschinenbau (B.Sc.), Pflichtmodul
	Zukunftsenergien (B.Eng.), Pflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Empfohlen: Kenntnisse aus dem Grundstudium
Lernergebnisse /	Die Studierenden verstehen den Aufbau automatisierter Systeme. Sie wissen,
Kompetenzen:	welche technischen Möglichkeiten bestehen und können
	Automatisierungsaufgaben selbsttätig lösen. Sie sind in der Lage einfache
	maschinennahe Computerprogramme zu schreiben (z.B. SPS) und haben sich
	mit einer Hochsprache befasst.
Inhalte:	Einführung in die Automatisierungstechnik mit den Teilgebieten Technische
	Informatik, Steuerungstechnik (Schaltsysteme) und (analoge) Regelungstechnik
	Grundlagen der Technischen Informatik: Logische Grundfunktionen,
	Rechenregeln der Schaltalgebra, Wahrheitstabelle, Schaltfunktion
	Technische Realisierung von Steuerungen: Verbindungsprogrammierte und
	Speicherprogrammierbare Steuerungen, Mikrocontrollersteuerungen
	Programmierung am Beispiel
	Prozessrechner: Grundlagen, Echtzeitbetriebssysteme, Mikrorechner (PC) als
	Prozessrechner,
	Programmierung mittels einer Hochsprache
	Praktikumsversuche
Studien-/ Prüfungsleistungen:	Klausur, 90 Minuten, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Beamer, Tafel, ausgeteilte Unterlagen, ILIAS
Literatur:	Pritschow, Günter, Einführung in die Steuerungstechnik, Carl Hanser Verlag,
	2006
	Seitz, Matthias, Speicherprogrammierbare Steuerungen, Carl Hanser Verlag,
	2008
Text für Transcript:	Control Engineering
	Terms and definition, aims; sensorics, actorics; codings; fundamental logical
	functions; hardwired controls; programmable logic controls (PLC); process
	control computers; programming language

Regelungstechnik

ester
ntmodul
lium
egelkreisen. Sie kennen die
Aufgabenstellungen das
sind in der Lage, die passenden
zunehmen. Zur Beurteilung und zur
verschiedene Verfahren.
Elementare Zeitverhalten,
allelschaltung,zusammengesetzte
enzgang: komplexe Darstellung,
jungsglieder, Ortskurven,
reisglieder
algleichungen,
legelkreise
yquist-Kriterium Lage der Wurzeln
, Einstellregeln
-
cht der Note für das Modul.
chnik, Vieweg+Teubner Verlag,
_
hnik für Ingenieure,
egelungstechnik, Carl Hanser

Modulhandbuch Fachbereich Maschinenbau und Mechatronik, TH-OWL

Text für Transcript:	Control Engineering
	Control system elements; modelling; elementary time response; Response
	functions; series, parallel and loop connections; selection and use of controllers;
	stability; frequency response: locus diagrams, frequency characteristics, frequency
	response of circuits; Laplace transformation; stability analysis; control
	performance; optimization criteria; setting and adjustment rules.

Maschinenelemente

Modulbezeichnung:	Maschinenelemente
Lehrveranstaltung:	Maschinenelemente
Kurzzeichen:	EME
Fachnummer:	6102
Semester:	Energietechnologie (BPO 20), 3. Semester
Modulbeauftragte/r:	Prof. Dr. Sören Wilhelms
Dozent/in:	Prof. Dr. Sören Wilhelms
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energie Technologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung (2 SWS)
	Übung (2 SWS), 1 Gruppe, max. 30 Persone
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Empfohlen: ECD
Lernergebnisse /	Lernergebnisse/Kompetenzen: Sie kennen die behandelten Maschinenelemente
Kompetenzen:	(Aufbau, Funktion, Eigenschaften). Sie kennen die generelle Vorgehensweise
	beim Festigkeitsnachweis und können geeignete Maschinenelemente auswählen
	und dimensionieren/berechnen.
Inhalte:	Spannungsbegriff, Grundzüge der Festigkeitsberechnung, Verbindungen, Federn,
	Wellen und Welle-Nabe-Verbindungen, Kupplungen, Bremsen, Getriebe.
	Änderungen vorbehalten.
Studien-/ Prüfungsleistungen:	Klausur (60 min, alle Hilfsmittel außer kommunikationsfähige), benotet (entspricht
	Modulnote)
Medienformen:	Lehrbuch, Tafel, Beamer, ILIAS
Literatur:	Wittel, H.; Muhs, D.; Jannasch, D.; Voßiek, J.: Roloff/Matek Maschinenelemente.
	Wiesbaden: Springer Vieweg, 2017. – ISBN 978-3-658-17895-6, 23. Auflage
Text für Transcript:	Machine Design.
	Strength calculation. Joining techniques (welding, rivetting, soldering, bonding,
	bolt joints). Pins. Elastic springs. Shafts and shaft-hub joints. Couplings, brakes.
	Gears. With reservation for changes.

Grundlagen Fluiddynamik

Modulbezeichnung:	Grundlagen Fluiddynamik
Lehrveranstaltung:	Grundlagen Fluiddynamik
Kurzzeichen:	MFD1
Fachnummer:	6103
Semester:	Virtuelle Produktentwicklung (BPO 20), 3. Semester
	Energietechnologie (BPO 20), 3. Semester
Modulbeauftragte/r:	Prof. DrIng. Georg Klepp
Dozent/in:	Prof. DrIng. Georg Klepp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	keine
Lernergebnisse /	Die Studierenden können:
Kompetenzen:	Das Strömungsverhalten von Fluiden beurteilen sowie die strömungstechnischen
	Auslegungsparameter (Druckverluste, Massenströme, Geschwindigkeiten)
	berechnen
	Einfache technische Anwendungen (Durchströmung und Umströmung)
	dimensionieren.
	Druck- und Geschwindigkeitsmessungen durchführen.
Inhalte:	Stoffeigenschaften von Flüssigkeiten und Gasen, Hydro- und Aerostatik (Kräfte,
	Auftrieb), Kontinuitätsgleichung, Energie-Gleichung, Impuls- und Drallsatz für
	stationäre Strömungen, Verluste bei der Durchströmung und Kräfte bei der
	Umströmung. Geschwindigkeits und Druckmessung
Studien-/ Prüfungsleistungen:	Klausur (120 Minuten) benotet. Die Note entspricht der Note für das Modul.
Medienformen:	Kreide und Tafel, Folien, Videos und Labor-Experimente, Unterlagen auf
	elektronischer Lernplattform, Versuchsanleitungen für das Praktikum
Literatur:	Willi Bohl: Technische Strömungslehre, Vogel
	F.M. White: Fluid Mechanics, McGraw Hill
Text für Transcript:	Fluid Dynamics Fundamentals
	Hydro- and aerostatics, equation of continuity, energy equation, momentum
	equation, internal and external flow, pressure, and velocity measurements.

Fluiddynamik und -simulation

Modulbezeichnung:	Fluiddynamik und -simulation
Lehrveranstaltung:	Fluiddynamik und -simulation
Kurzzeichen:	MFS
Fachnummer:	6104
Semester:	Zukunftsenergien (BPO 15), 4. Semester
	Maschinenbau (BPO 17), 4. Semester
	Virtuelle Produktentwicklung (BPO 20), 4. Semester
	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. DrIng. Georg Klepp
Dozent/in:	Prof. DrIng. Georg Klepp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul in Studienrichtung Kraft- und
	Arbeitsmaschinen,
	Wahlpflichtmodul in allen weiteren Studienrichtungen Zukunftsenergien (B.Eng.),
	Pflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	ach BPO: keine
	Empfohlen: Grundlagen Fluiddynamik Thermodynamik
Lernergebnisse /	Lernergebnisse/Kompetenzen:
Kompetenzen:	Die Studierenden kennen dreidimensionale, instationäre kompressible und
	inkompressible Strömungen (Phenomene und DGL)
	Die Studierenden können
	- physikalische Phenomene mit dimensionslosen Größen beschreiben
	- einfache CFD-Simulation ausführen
Inhalte:	Grenzschichten, Widerstand umströmter Körper (Platte, Kugel/Zylinder)
	Tragflügel), Rohrströmung, Grundlagen der Gasdynamik / Strömung
	kompressibler Fluide, Grundlagen der Turbulenz, Ähnlichkeit,
	Navier-Stokes-Gleichungen. Einführung in die Simulation (CFD)
Studien-/ Prüfungsleistungen:	Klausur (120 Minuten) benotet. Die Note entspricht der Note für das Modul.
Medienformen:	Kreide und Tafel, Folien, Videos und Labor-Experimente, Unterlagen auf
	elektronischer Lernplattform, Versuchsanleitungen für das Praktikum
Literatur:	Willi Bohl: Technische Strömungslehre, Vogel
	F.M. White: Fluid Mechanics, McGraw Hill
	Gerd Junge: Einführung in die technische Stgrömungslehre, Hanser
Text für Transcript:	Fluid Dynamics and Simulation
	Boundary layer, drag, compressible flow, similtude, turbulence, Navier-Stohes
	equations, CFD

Kolbenmaschinen

Modulbezeichnung:	Kolbenmaschinen
Lehrveranstaltung:	Kolbenmaschinen
Kurzzeichen:	MKM
Fachnummer:	6105
Semester:	Maschinentechnik (BPO 11), 4. Semester
	Maschinenbau (BPO 17), 4. Semester
	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. DrIng. Heinrich Uhe
Dozent/in:	Prof. DrIng. Heinrich Uhe
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul in Studienrichtung Kraft- und
	Arbeitsmaschinen
	Wahlpflichtfach in allen weiteren Studienrichtungen
	Energietechnologie (B.Eng.)Pflichtmodul in der Studienrichtung
	Kraftstoffsystemtechnik
	Energietechnologie (B.Eng.)Pflichtmodul in der Studienrichtung
	Fluidsystemtechnik
Lehrform / SWS:	Vorlesung / 3 SWS
	Übung / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: das Bestehen der Prüfungen in den Fächern Mathematik 1 bis 4
- Community of ducestizating chi	(Fach-Nr. 6115 bis 6118) und Technische Mechanik 1 und 2 (Fach-Nr. 6119,
	6120)
	Empfohlen: Thermodynamik 1 und (begleitend) Thermodynamik 2
Lernergebnisse /	Die Studierenden können das in Mechanik, Thermodynamik und Grundlagen des
Kompetenzen:	Konstruierens erworbene Grundlagenwissen auf Kolbenmaschinen anwenden.
	Sie erkennen selbständig die Zusammenhänge. Sie können ausgeführte
	Maschinen nachvollziehen.
Inhalte:	Überblick, Vergleichsprozesse, Eigenschaften und Kennwerte der realen
	Prozesse, Kennfelder der Maschinen und Zusammenwirken mit anzutreibenden
	oder antreibenden Aggregaten, Dynamik und Massenkräfte, konstruktiver Aufbau
	mit Begründung ausgeführter Konstruktionen, hier mit Bezug auf ähnliche
	Problemstellungen im allgem. Maschinenbau, Besonderheiten der Kompressoren
	und hydraulischen Kolbenmaschinen
Studien-/ Prüfungsleistungen:	Klausur, 180 Minuten oder mündliche Prüfung, benotet.
o taurion / r runan generatur gener	Die Note entspricht der Note für das Modul.
Medienformen:	Tafel und Kreide, Folien, teilw. Unterlagen im Rahmen Notebook-University-
	Lernplattform, kleinere praktische Experimente im Labor, Videos, Skript
Literatur:	Köhler,E. / Flierl, R.: Verbrennungsmotoren; Mollenhauer, K.: Handbuch
	Dieselmotoren; Urlaub, A.: Verbrennungsmotoren; Küntscher, V. / Hoffmann,
	W. : Kraftfahrzeugmotoren; Basshuysen, R. / Schäfer, F. : Handbuch
	Verbrennungsmotor; Eifler, W./ Schlücker, E./ Spicher, U. / Will, G. : Küttner
	Kolbenmaschinen; MTZ Motortechnische Zeitschrift
	The state of the s

Text für Transcript:	Reciprocating Engines
	Thermodynamic fundamentals and ideal models of machine cycles, characteristic
	values of real machines, engine characteristic maps, gas exchange process,
	crank drive mechanism, kinematics and forces in reciprocating machines, layout
	and basic design of internal combustion engines, design details of existing
	machines, specifics of reciprocating compressors and hydraulic machines.

Kurzzeichen: Fachnummer: 6115 Semester: Virtuelle Produktentwicklung (BPO 20), 1. Semester Energietechnologie (BPO 20), 1. Semester Energietechnologie (BPO 20), 1. Semester Modulbeauftragte/r: Prof.in Dr. rer. nat. Lerch-Reisp Dozent/in: Prof.in Dr. rer. nat. Lerch-Reisp Unterrichtssprache: deutsch Zuordnung zum Curriculum: Lehrform / SWS: Vorlesung / 2 SWS Übung / 2 SWS Übung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Empfohlen: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Kompetenzen: linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Eigene Lehrunterlagen, Semesterapparat,	Modulbezeichnung:	Mathematik 1
Fachnummer: Semester: Virtuelle Produktentwicklung (BPO 20), 1. Semester Energietechnologie (BPO 20), 1. Semester Prof.in Dr. rer. nat. Lerch-Reisp Dozent/in: Prof.in Dr. rer. nat. Lerch-Reisp Unterrichtssprache: deutsch Zuordnung zum Curriculum: Lehrform / SWS: Vorlesung / 2 SWS Übung / 2 SWS Ubung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Empfohlen: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten, vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Eigene Lehrunterlagen, Semesterapparat,	Lehrveranstaltung:	Mathematik 1
Semester: Virtuelle Produktentwicklung (BPO 20), 1. Semester Energietechnologie (BPO 20), 1. Semester Prof. in Dr. rer. nat. Lerch-Reisp Dozent/in: Prof. in Dr. rer. nat. Lerch-Reisp Unterrichtssprache: deutsch Zuordnung zum Curriculum: Lehrform / SWS: Vorlesung / 2 SWS Übung / 2 SWS Übung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Pies Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten, vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Kurzzeichen:	MMA1
Energietechnologie (BPO 20), 1. Semester Modulbeauftragte/r: Prof.in Dr. rer. nat. Lerch-Reisp Dozent/in: Prof.in Dr. rer. nat. Lerch-Reisp Unterrichtssprache: deutsch Zuordnung zum Curriculum: Energietechnologie (B.Eng.) Pflichtmodul Lehrform / SWS: Vorlesung / 2 SWS	Fachnummer:	6115
Modulbeauftragte/r: Prof.in Dr. rer. nat. Lerch-Reisp Dozent/in: Prof.in Dr. rer. nat. Lerch-Reisp Unterrichtssprache: deutsch Zuordnung zum Curriculum: Energietechnologie (B.Eng.) Pflichtmodul Lehrform / SWS: Vorlesung / 2 SWS Übung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenttnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abtur Lernergebnisse / Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten "vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Semester:	Virtuelle Produktentwicklung (BPO 20), 1. Semester
Dozent/in: Prof.in Dr. rer. nat. Lerch-Reisp		Energietechnologie (BPO 20), 1. Semester
Unterrichtssprache: Zuordnung zum Curriculum: Energietechnologie (B.Eng.) Pflichtmodul Lehrform / SWS: Vorlesung / 2 SWS Übung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten "vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Modulbeauftragte/r:	
Zuordnung zum Curriculum: Lehrform / SWS: Vorlesung / 2 SWS Übung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica	Dozent/in:	Prof.in Dr. rer. nat. Lerch-Reisp
Vorlesung / 2 SWS Übung / 2 SWS In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik ma Abitur Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Eigene Lehrunterlagen, Semesterapparat,	Unterrichtssprache:	deutsch
Übung / 2 SWS	Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtmodul
In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Lehrform / SWS:	Vorlesung / 2 SWS
ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2. Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		Übung / 2 SWS
Workload: 120 h davon 60 h Präsenz- und 60 h Eigenstudium Credits: 5 Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der
Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 2.
Teilnahmevoraussetzungen: Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Workload:	120 h davon 60 h Präsenz- und 60 h Eigenstudium
Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für Grundkurs Mathematik im Abitur Lernergebnisse / Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten "vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Credits:	5
Grundkurs Mathematik im Abitur Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
Lernergebnisse / Kompetenzen: Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für
Kompetenzen: linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Eigene Lehrunterlagen, Semesterapparat,		Grundkurs Mathematik im Abitur
gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Eigene Lehrunterlagen, Semesterapparat,	Lernergebnisse /	Die Studierenden beherrschen das Lösen von algebraischen Gleichungen und
von Vektoren und können damit physikalische und technische Probleme lösen, z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Kompetenzen:	linearen Gleichungssystemen sowie den Umgang mit komplexen Zahlen. Sie
z.B. die Berechnung von Drehmomenten, Winkel, Kräften. Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		gewinnen Einblicke in die mathematische Beweisführung. Sie lernen die Algebra
Inhalte: Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		von Vektoren und können damit physikalische und technische Probleme lösen,
Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		z.B. die Berechnung von Drehmomenten, Winkel, Kräften.
Anwendungen, komplexe Zahlen Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Inhalte:	Lineare Algebra: Binomialkoeffizienten ,vollständige Induktion, Algebraische
Studien-/ Prüfungsleistungen: Klausur einstündig, benotet. Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		Gleichungen, lineare Gleichungssysteme, Vektorrechnung und deren
Die Note entspricht der Note für das Modul. Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		Anwendungen, komplexe Zahlen
Medienformen: Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien, Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,	Studien-/ Prüfungsleistungen:	Klausur einstündig, benotet.
Animationen am PC, Programmierung mit Maple und Mathematica Literatur: Eigene Lehrunterlagen, Semesterapparat,		Die Note entspricht der Note für das Modul.
Literatur: Eigene Lehrunterlagen, Semesterapparat,	Medienformen:	Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien,
		Animationen am PC, Programmierung mit Maple und Mathematica
Stöcker Analysis für Ingenieurstudenten	Literatur:	Eigene Lehrunterlagen, Semesterapparat,
Otobas, Analysis ful ingenieurstauenten		Stöcker, Analysis für Ingenieurstudenten
Weltner, Mathematik für Physiker		Weltner, Mathematik für Physiker
Papula, Mathematik für Naturwissenschaftler und Ingenieure		Papula, Mathematik für Naturwissenschaftler und Ingenieure
Westermann, Mathematik für Ingenieure		Westermann, Mathematik für Ingenieure
Text für Transcript: Mathematics 1	Text für Transcript:	Mathematics 1
binomial coefficients, induction, solution of algebraic equations and systems of		binomial coefficients, induction, solution of algebraic equations and systems of
linear equations,		linear equations,
Vector algebra: definition, elementary properties of vectors and their application in		Vector algebra: definition, elementary properties of vectors and their application in
physics, complex numbers		physics, complex numbers

Modulbezeichnung:	Mathematik 2
Lehrveranstaltung:	Mathematik 2
Kurzzeichen:	MMA 2
Fachnummer:	6116
Semester:	Virtuelle Produktentwicklung (BPO 20), 1. Semester
	Energietechnologie (BPO 20), 1. Semester
Modulbeauftragte/r:	Prof.in Dr. rer. nat. Lerch-Reisp
Dozent/in:	Prof.in Dr. rer. nat. Lerch-Reisp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
	In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der
	zweiten Semesterhälfte statt.
Workload:	120 h davon 60 h Präsenz- und 60 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen, Hinweis:
	Das Modul 2 baut im ersten Semester sequentiell auf dem Modul 1 auf
	d.h. Mitte des ersten Semesters wird im Anschluß an Modul 1 mit dem Modul 2
	fortgefahren.
	Empfohlen: Grundkenntnisse der Mathematik, basierend auf den Kenntnissen für
	Grundkurs Mathematik im Abitur
Lernergebnisse /	Die Studierenden entwickeln das Verständnis für die grundlegenden Prinzipien
Kompetenzen:	der Analysis, insbesondere für den Grenzwertbegriff (Stetigkeit, Differentiation,
	Linearisierungsprinzip).
Inhalte:	Grundlagen der Analysis:
	Eigenschaften von Funktionen, Folgen, Reihen und Grenzwerte, insbesondere
	arithmetische und geometrische Folgen und Reihen, Differentialrechnung
Studien-/ Prüfungsleistungen:	Klausur einstündig, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien,
	Animationen am PC, Programmierung mit Maple und Mathematica
Literatur:	Eigene Lehrunterlagen, Semesterapparat,
	Stöcker, Analysis für Ingenieurstudenten
	Weltner, Mathematik für Physiker
	Papula, Mathematik für Naturwissenschaftler und Ingenieure
	Westermann, Mathematik für Ingenieure
Text für Transcript:	Mathematics 2
	elementary functions, sequences and series, geometrical and arithmetical
	sequences and series, limits, differential calculus

Modulbezeichnung:	Mathematik 3
Lehrveranstaltung:	Mathematik 3
Kurzzeichen:	MMA 3
Fachnummer:	6117
Semester:	Maschinentechnik (BPO 11), 2. Semester
	Mechatronik (BPO 11), 2. Semester
	Zukunftsenergien (BPO 13), 2. Semester
	Zukunftsenergien (BPO 08), 2. Semester
	Maschinenbau (BPO 17), 2. Semester
	Mechatronik (BPO 17), 2. Semester
	Virtuelle Produktentwicklung (BPO 20), 2. Semester
	Energietechnologie (BPO 20), 2. Semester
Modulbeauftragte/r:	Prof'.in Dr. rer. nat. Cornelia Lerch-Reisp
Dozent/in:	Prof'.in Dr. rer. nat. Cornelia Lerch-Reisp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul
	Mechatronik (B.Sc.), Pflichtmodul
	Zukunftsenergien (B.Eng.), Pflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
	In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der
	ersten Semesterhälfte statt. In der zweiten Semesterhälfte folgt Mathematik 4.
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Kenntnisse aus Mathematik 1 und Mathematik 2
Lernergebnisse /	Die Studierenden entwickeln ein Verständnis für die Integralrechnung und
Kompetenzen:	Reihen, insbesondere Taylorreihen, und können diese anwenden.
	Sie können die Integralrechnung zur Flächen-, Volumen-,
	Mantelflächenberechnung sowie der Bogenlängen anwenden. Sie verstehn den
	Zusammenhang zwischen Ableitungsfunktion und Stammfunktion.
	Sie sind mit der Wichtigkeit und Methodik der Reihenentwicklung in der
	Mathematik vertraut.
Inhalte:	Integralrechnung, Taylorreihen, Fourierreihen
Studien-/ Prüfungsleistungen:	Klausur einstündig, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien,
	Animationen am PC, Programmierung mit Maple und Mathematica
Literatur:	Eigene Lehrunterlagen, Semesterapparat,
	Stöcker, Analysis für Ingenieurstudenten
	Weltner, Mathematik für Physiker
	Papula, Mathematik für Naturwissenschaftler und Ingenieure
	Westermann, Mathematik für Ingenieure
Text für Transcript:	Mathematics 3
	Integral calculus, Taylor series, Fourier series

Modulbezeichnung:	Mathematik 4
Lehrveranstaltung:	Mathematik 4
Kurzzeichen:	MMA 4
Fachnummer:	6118
Semester:	Maschinentechnik (BPO 11), 2. Semester
	Mechatronik (BPO 11), 2. Semester
	Zukunftsenergien (BPO 13), 2. Semester
	Maschinenbau (BPO 17), 2. Semester
	Mechatronik (BPO 17), 2. Semester
	Virtuelle Produktentwicklung (BPO 20), 2. Semester
	Energietechnologie (BPO 20), 2. Semester
Modulbeauftragte/r:	Prof.in Dr. rer. nat. Cornelia Lerch-Reisp
Dozent/in:	Prof'.in Dr. rer. nat. Cornelia Lerch-Reisp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul
_	Mechatronik (B.Sc.), Pflichtmodul
	Zukunftsenergien (B.Eng.), Pflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
	In der Praxis findet das Modul mit 4 SWS Vorlesung und 4 SWS Übung in der
	zweiten Semesterhälfte statt.
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Kenntnisse aus Mathematik 1, 2 und 3
Lernergebnisse /	Die Studierenden erwerben Kenntnisse und Methoden zum Lösen von
Kompetenzen:	Differentialgleichungen, insbesondere zum Beschreiben von
	Wachstumsprozessen und Schwingungen, Stabilitätsprobleme.
	Sie lernen Flächen im Raum zu beschreiben, Steigungen durch partielle
	Ableitungen und Gradienten zu errechnen.
Inhalte:	Differenzialgleichungen, Funktionen mehrerer Veränderlicher, Matrizenrechnung
	und Eigenwerttheorie und damit verbunden das Lösen von linearen
	Differentialgleichungssystemen
Studien-/ Prüfungsleistungen:	Klausur einstündig, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	Eigenes Skript, Lehrbücher, programmierbare Taschenrechner, Folien,
	Animationen am PC, Programmierung mit Maple und Mathematica
Literatur:	Eigene Lehrunterlagen, Semesterapparat,
	Stöcker, Analysis für Ingenieurstudenten
	Weltner, Mathematik für Physiker
	Papula, Mathematik für Naturwissenschaftler und Ingenieure
	Westermann, Mathematik für Ingenieure
Text für Transcript:	Mathematics 4
	Ordinary differential equations, introduction to Laplace transformation, functions
	of two and more variables

Thermodynamik 1

Modulbezeichnung:	Thermodynamik 1
Lehrveranstaltung:	Thermodynamik 1
Kurzzeichen:	MTD 1
Fachnummer:	6121
Semester:	1 bzw. 3
Modulbeauftragte/r:	Prof. DrIng. Joachim Dohmann
Dozent/in:	Prof. DrIng. Joachim Dohmann
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinentechnik (B.Sc.), Pflichtmodul (3. Semester)
	Zukunftsenergien (B.Eng.), Pflichtmodul (1. Semester)
	Energietechnologie (B.Eng.) Pflichtmodul 3. Semester)
Lehrform / SWS:	Vorlesung / 3 SWS
	Übung / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
_	Empfohlen: Mathematik
Lernergebnisse /	Die Studierenden kennen und verstehen die Begriffe und Grundgesetze der
Kompetenzen:	technischen Thermodynamik und können sie sicher auf technische
	Problemstellungen anwenden. Sie erkennen in technischen Situationen
	auftretende thermodynamische Probleme, können sie beschreiben und lösen.
Inhalte:	Thermisches Verhalten einfacher Stoffe. Thermische Zustandsgrößen Druck und
	Temperatur. Temperaturmessung. Massen- und Energiebilanzen.
	Kalorimetrie. Thermische Zustandsgleichung. Prozessgrößen Wärme und Arbeit.
	Zustandsänderungen idealer Gase. Erster Hauptsatz der Thermodynamik,
	Energieerhaltung, kalorische Zustandsgrößen, Innere Energie, Enthalpie und
	Entropie. Dissipation, Zweiter Hauptsatz der Thermodynamik. Ideale
	Kreisprozesse. Technische Beispiele: Joule-, Ericson-, Otto- und Dieselprozess.
	Reale Kreisprozesse.
Studien-/ Prüfungsleistungen:	Klausur 1 h, benotet
	Die Note entspricht der Note für das Modul.
Medienformen:	Folien, Tafel, Vorlesungsbegleitendes Skript, Übungsaufgaben und weitere
	Studientexte siehe www.th-owl.de/fb6
Literatur:	Baehr, H.D.; Kabelac, S.; Thermodynamik, Springer Verlag
	Cerbe, G.; Wilhelms, G.; Technische Thermodynamik, Carl Hanser Verlag
Text für Transcript:	Thermodynamics 1
	Thermodynamic behaviour of simple matters, conservation of mass and energy.
	combustion, measurement of temperature and heat, equations of state, first and
	second law of thermodynamics, dissipation and efficiency, simple and cyclic
	thermodynamically processes, technical examples (Otto-, Diesel-, Jouleprocess).

Thermodynamik 2

Modulbezeichnung:	Thermodynamik 2
Lehrveranstaltung:	Thermodynamik 2
Kurzzeichen:	MTD 2
Fachnummer:	6122
Semester:	Maschinentechnik (BPO 11), 4. Semester
	Maschinenbau (BPO 17), 4. Semester
	Virtuelle Produktentwicklung (BPO 20), 4. Semester
	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. DrIng. Joachim Dohmann
Dozent/in:	Prof. DrIng. Joachim Dohmann
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinenbau (B.Sc.), 4. Sem., Pflichtmodul in Studienrichtung Kraft- und
	Arbeitsmaschinen, Wahlpflichtmodul in allen weiteren Studienrichtungen
	Zukunftsenergien (B.Eng.), Pflichtmodul
	Virtuelle Produktentwicklung (B.Sc.) Wahlpflichtfach
	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
Letinomi / Gwo.	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
	Nach BPO-M-2017: das Bestehen der Prüfungen in den Fächern Mathematik 1
Teilnahmevoraussetzungen:	<u> </u>
	bis 4 (Fach-Nr. 6115 bis 6118) und Technische Mechanik 1 und 2 (Fach-Nr.
	6119, 6120)
	Nach BPO-Z-2015: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
L array ab piece /	Empfohlen: Thermodynamik 1
Lernergebnisse /	Die Studierenden können die Begriffe Innere Energie, Enthalpie, Entropie etc.
Kompetenzen:	anwenden. Sie sind in der Lage, thermodynamische Problemstellungen zu
	abstrahieren, in thermodynamischen Diagrammen darzustellen und mit diesen
	Diagrammen zu arbeiten. Sie können Wärmeübertragungsprozesse analysieren
	und berechnen.
Inhalte:	Praktische Nutzung thermodynamischer Diagramme. Thermisches Verhalten von
	Stoffen mit Phasenänderung. Zustandsänderungen des Mediums Dampf.
	Technische Anwendungen hierzu. Wärmeübertragung durch Leitung, Konvektion
	und Strahlung.
	Zum Stoff werden vertiefende Experimente im Labor durchgeführt: z.B.
	Untersuchung des Zustandsverhaltens von Dampf, Messung des
	Wärmeübergangskoeffizienten, stationärer Wärmedurchgang, instationäre
	konvektive Wärmeübertragung, Wärmestrahlung. Thermographie.
Studien-/ Prüfungsleistungen:	Klausur 90-minütig, benotet. (alle Hilfsmittel)
	Die Note entspricht der Note für das Modul.
Medienformen:	Folien, Tafel, Vorlesungbegleitendes Skript, Übungsaufgaben,
	Versuchsanleitungen und weitere Hilfsmittel siehe www.th-owl.de/fb6
Literatur:	Cerbe, G.; Wilhelms, G.; Technische Thermodynamik, Carl Hanser Verlag
	Polifke, W.; Kopitz, T.; Wärmeübertragung, 2. Auflage 2009, Verlag Pearson
	Deutschland
	Dohmann, J.; Thermodynamik der Kälteanlagen und Wärmepumpen, Springer
	2016.

Modulhandbuch Fachbereich Maschinenbau und Mechatronik, TH-OWL

Text für Transcript:	Thermodynamics 2
	Thermodynamic behavior of real matters; phase transitions; use of
	thermodynamics chart; design of cyclic processes; heat and steam; heat transfer,
	conduction, convection and radiation.

CAD und Grundlagen des Konstruierens

Modulbezeichnung:	CAD und Grundlagen des Konstruierens
Lehrveranstaltung:	CAD und Grundlagen des Konstruierens
Kurzzeichen:	ECD
Fachnummer:	6140
Semester:	Energietechnologie (BPO 20), 2. Semester
Modulbeauftragte/r:	Prof. Dr. Sören Wilhelms
Dozent/in:	Prof. Dr. Sören Wilhelms
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng) BPO 20
	Pflichtfach
Lehrform / SWS:	Vorlesung (2 SWS)
	Übung (2 SWS), max. Gruppengröße 15 Personen, eigene Rechner erforderlich
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Empfohlen: Grundpraktikum
Lernergebnisse /	Sie können technische Zeichnungen lesen, verstehen und selbst erstellen. Sie
Kompetenzen:	können Bauteile und Baugruppen in einem 3D-CAD-System modellieren und
	normgerechte Zeichnungen ableiten. Sie kennen gängige Lagerbauformen und
	ihre Eigenschaften, können Wälzlagerungen gestalten und hinsichtlich
	Beanspruchung und Lebensdauer auslegen.
Inhalte:	Vorlesung: Grundlagen des technischen Zeichnens. Schnitte, Bemaßung.
	Grundzüge von Toleranzen und Passungen, Form- und Lagefehlern. Kurze
	Einführung in die Benutzung eines CAD-Systems am Beispiel von SolidWorks
	(weitere Programmerlernung im Selbststudium). Funktion, Bauweisen,
	Eigenschaften und Lebensdauerberechnung von Wälzlagern.
	Übung: Selbständiges Zeichnen auf Papier, rechnerunterstütztes Modellieren von
	Volumenkörpern und Baugruppen sowie Zeichnungsableitung anhand von
	Übungsbeispielen in SolidWorks.
	Änderungen vorbehalten.
Studien-/ Prüfungsleistungen:	Aktive Teilnahme und Klausur (60 Minuten) benotet (entspricht Modulnote)
Medienformen:	Tafel, Beamer, Skript, ausgeteilte Unterlagen, Wälzlagerkatalog, ILIAS
Literatur:	Kurz, U.; Wittel, H.: Böttcher/Forberg Technisches Zeichnen. Wiesbaden :
	Springer Vieweg, 2013. – ISBN 978-3-8348-1806-5, 26. Auflage
	Wittel, H.; Muhs, D.; Jannasch, D.; Voßiek, J.: Roloff/Matek Maschinenelemente.
	Wiesbaden: Springer Vieweg, 2017. – ISBN 978-3-658-17895-6, 23. Auflage
	Hoischen, H.; Fritz, A.: Technisches Zeichnen. Berlin : Cornelsen, 2018. – ISBN
	978-3-06-451712-7, 36. Auflage
	Schabacker, M.; Vajna, S.: SolidWorks – kurz und bündig. 4. Aufl., Wiesbaden :
	Springer, 2016. – ISBN 978-3-658-16173-6
Text für Transcript:	Basics of Engineering Design.
	Engineering drawing and drawing conventions. Sections, dimensions. Tolerances,
	limits, fits. Surfaces. Computer-aided 3D modelling and drawing. Rolling element
	bearings, life equation. With reservation for changes.

Bachelorarbeit und Kolloquium

Modulbezeichnung:	Bachelorarbeit und Kolloquium
Lehrveranstaltung:	Bachelorarbeit und Kolloquium
Kurzzeichen:	MBK
Fachnummer:	6141
Semester:	Virtuelle Produktentwicklung (BPO 20), 6. Semester
	Energietechnologie (BPO 20), 6. Semester
Modulbeauftragte/r:	der/die Erstprüfende
Dozent/in:	der/die Erstprüfende
Unterrichtssprache:	deutsch oder englisch
Zuordnung zum Curriculum:	Pflichtmodul
Lehrform / SWS:	Eigenständige Untersuchung einer ingenieurmäßigen Aufgabenstellung
Workload:	450 h = 360 h Bachelorarbeit und 90 h Kolloquium
Credits:	12+3
Teilnahmevoraussetzungen:	Nach BPO: alle studienbegleitenden Prüfungen des 13. Semester bestanden,
	mindestens 150 Cr, erfolgreiche Absolvierung der Studienarbeit
	Empfohlen: alle Module
Lernergebnisse /	Die Studierenden haben mit der Bachelorarbeit die Kompetenz erworben,
Kompetenzen:	fächerübergreifend die bisher im Studium erworbenen fachlichen
	Einzelkenntnisse und Einzelfähigkeiten anzuwenden. Sie wenden
	wissenschaftliche Methoden an. Dadurch werden praktische Erfahrungen
	erworben und die Methoden- und Fachkompetenz hinsichtlich der praxisnahen
	Anwendung vertieft. Aufgrund unterschiedlicher Aufgabenstellungen können
	bestimmte Methoden- und Fachkompetenzen in besonderer Weise vertieft oder
	erworben werden.
	Im Rahmen der Bachelorarbeit haben die Studierenden die Methodenkompetenz
	erworben, die einzelnen Prozessschritte einer umfangreicheren
	Projektabwicklung anzuwenden.
Inhalte:	Richtet sich nach der konkreten ingenieurmäßigen Aufgabenstellung.
Studien-/ Prüfungsleistungen:	Schriftlicher Bericht und Kolloquium, benotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	
Literatur:	
Text für Transcript:	Bachelor Thesis and Colloquium
	Objectives: Applying and learning scientific methods; gaining experience in
	practical work; being able to manage a larger project.
	Contents: See title of Bachelor Thesis.

Studienarbeit

Modulbezeichnung:	Studienarbeit
Lehrveranstaltung:	Studienarbeit
Kurzzeichen:	MSU
Fachnummer:	6142
Semester:	Virtuelle Produktentwicklung (BPO 20), 6. Semester
	Energietechnologie (BPO 20), 6. Semester
Modulbeauftragte/r:	der/die Erstprüfende
Dozent/in:	der/die Erstprüfende
Unterrichtssprache:	deutsch oder englisch
Zuordnung zum Curriculum:	Pflichtmodul
Lehrform / SWS:	Eigenständige Untersuchung einer ingenieurmäßigen Aufgabenstellung
Workload:	450 h
Credits:	15
Teilnahmevoraussetzungen:	Nach BPO: Mindestanzahl von 100 Credits
	Semesters bis auf drei
	Empfohlen: alle Pflichtmodule
Lernergebnisse /	Durch die Studienarbeit können die Studierenden die bisher im Studium
Kompetenzen:	erworbenen Kenntnisse und Fähigkeiten anwenden. Dadurch werden praktische
	Erfahrungen erworben und die Methoden- und Fachkompetenz hinsichtlich der
	praxisnahen Anwendung vertieft. Aufgrund unterschiedlicher Aufgabenstellungen
	können bestimmte Methoden- und Fachkompetenzen in besonderer Weise
	vertieft oder erworben werden. Lernziel der Studienarbeit ist es auch, die in
	einzelnen Modulen erlernten Fähigkeiten zusammenzuführen und so mit einem
	verbreiteten Blick an ein praxisnahes Projekt heranzugehen.
	Im Rahmen der Studienarbeit werden die einzelnen Prozessschritte einer
	Projektabwicklung erlernt und dies als Methodenkompetenz erworben.
Inhalte:	Richtet sich nach der konkreten ingenieurmäßigen Aufgabenstellung.
Studien-/ Prüfungsleistungen:	Schriftlicher Bericht, benotet. Vortrag, unbenotet.
	Die Note entspricht der Note für das Modul.
Medienformen:	
Literatur:	Als Vorbereitung ist keine Literatur angebbar.
Text für Transcript:	Project Work
	Objectives: Within the context of project work the main objective is to enhance the
	students' learning experience by application, synthesis, and reflection upon
	information and materials received in the lectures. Students are expected to learn
	and apply scientific methods and to make first experiences in practical work. They
	shall be able to manage a small project.
	Contents: Depends on the subject of the project work.

Verfahrenstechnik

Modulbezeichnung:	Verfahrenstechnik
Lehrveranstaltung:	Verfahrenstechnik
Kurzzeichen:	EVT
Fachnummer:	6560
Semester:	Energietechnologie (BPO 20), 3. Semester
Modulbeauftragte/r:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Dozent/in:	M.Sc. J. Fröhlich
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
Lernergebnisse /	Die Studierenden sind mit den grundlegenden verfahrenstechnischen Prozessen
Kompetenzen:	vertraut. Sie können auf der Basis stöchiometrische Bilanzierungen Stoff- und
	Energiebilanzen für unterschiedliche Reaktortypen aufstellen und lösen. Sie
	können ideale Reaktoren (Rührkessel, Rohrreaktor, Rührkesselkaskade) bzgl.
	Hauptabmessungen, Verweilzeit, Durchsatz und Umsatzgrad auslegen und
	unterschiedliche Reaktortypen bzgl. ihrer betrieblichen Vor- und Nachteile
	beurteilen.
Inhalte:	Verfahrenstechnische Grundprozesse, stöchiometrische Bilanzierung,
	Thermodynamik chemischer Reaktionen, Reaktionskinetik; chem. Gleichgewicht,
	Stoff- und Energiebilanzen, ideale Reaktoren (Rührkessel
	diskontinuierlich/kontinuierlich, Rohrreaktor, Kaskade): Berechnung,
	Betriebsverhalten, Auslegung, Fluid-Fluid-Reaktionen, Homogene und
	heterogene Katalyse, Adsorption
Studien-/ Prüfungsleistungen:	Klausur(120 Minuten). Die Note entspricht der Note für das Modul.
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning
Literatur:	M. Baerns, A. Behr: Technische Chemie, Wiley VCH 2014
	K. Hartwig, L. Martens,: Chemisceh Verfahrenstechnik. Oldenbourg 2007
	J. Hagen: Chemieraktoren. Wiley VCH 2004
	Vinke: Chemie für Ingenieure, Oldenbourg 2008
Text für Transcript:	Process Engineering
	Processes, chemical reactions, mass and energy balance, design of reactors,
	catalysis, adsorption,

Energie-Praktikum

Modulbezeichnung:	Energie-Praktikum
Lehrveranstaltung:	Energie-Praktikum
Kurzzeichen:	EMP
Fachnummer:	6570
Semester:	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. DrIng. Klepp / Prof. Krafstoffe / Prof. Dr. Ing. Uhe
Dozent/in:	Prof. DrIng. Klepp / Prof. Krafstoffe / Prof. Dr. Ing. Uhe
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach 4.u.5. Semester
Lehrform / SWS:	Praktikum / 2 SWS + 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Empfohlen: Messtechnik, Fluiddynamik, Thermodynamik, Elektrotechnik,
	Kolbenmaschinen, Strömungsmaschinen
Lernergebnisse /	Die Studierenden haben die Kompetenz das in den Vorlesungen erlangte
Kompetenzen:	theoretische Wissen praktisch umzusetzen. Sie können selbstständig einen
	Messaufbau erstellen, die experimentell zu erfassenden Werte sinnvoll festlegen,
	die Ergebnisse auswerten und einen technischen Bericht erstellen.
Inhalte:	Verschiedene Versuche aus dem Themenbereich Strömungstechnik,
	Thermodynamik, Kraft-Arbeitsmaschinen, Rohrleistungstechnik, Energietechnik
	Beispiele:
	- Hitzdrahtanemometrie, Durchflussmessung, pneumatische Sonden
	- Indizierung eines Dieselmotors
	- Abnahmeversuch an einem Kompressor
	- Kennlinienmessung an Pumpen und Turbinen
	- Kennlinie von Ventilen/Armaturen
	- Druckluftanlage
	- Brennstoffzelle
	- Wärmepumpe
Studien-/ Prüfungsleistungen:	Semesterbegleitende Aufgaben, benotet. Die Note entspricht der Note für das
	Modul.
Medienformen:	Während der Vorbesprechungen Tafel und Kreide, Overheadfolien, Beamer,
	Bilder u. Filme, e-Learning. Darstellung wesentlicher Messgeräteanzeigen über
	Beamer.
Literatur:	W. Nitsche: Strömungsmesstechnik. Springer.
	N. Weichert: Messtechnik und Messdatenerfassung, Oldenbourg
Text für Transcript:	Energy Laboratory
	Experiments with different machines as pumps, fans, combustion engines , fuel
	cells, valves, heat pumps. Selection and assembly of the required measuring
	instrumentation to determine the characteristic machine data, application of
	computer assisted data logging, evaluation of measured data, preparation of a
	technical report.

Interdisziplinäre Projektarbeit

Modulbezeichnung:	Interdisziplinäre Projektarbeit
Lehrveranstaltung:	Interdisziplinäre Projektarbeit
Kurzzeichen:	EIP
Fachnummer:	6580
Semester:	Energietechnologie (BPO 20), 5. Semester
Modulbeauftragte/r:	Prof. Dr. Ing. G. Klepp
Dozent/in:	Lehrende des Studiengangs und Lehrende anderer Studiengänge, die das
	Interdisziplinäre Projekt im Studienverlauf integriert haben.
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Projektarbeit
Workload:	150 h Gruppenarbeit, Präsenz- und Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundlagenkenntnisse aus den ersten drei Semestern des
	Studiengangs
Lernergebnisse /	Kompetenzsteigerung zur Arbeit und Problemlösung in Gruppen, Projektarbeit
Kompetenzen:	und Projektmanagement, interdisziplinärer Arbeit, Kommunikation und
	Präsentation.
	Anwendung praxisnaher Fachmethoden, Übertragung von gelerntem sowie
	erarbeitetem Wissen auf konkrete Anwendungsbeispiele
	Stärken der Problemlösungkompetenz. Methoden der Selbstorganisation,
	Anwendung von Präsentationstechniken.
	Die Studierenden können sich in komplexe Problemstellungen auch unter
	Einbeziehung der Themen außerhalb ihres fachlichen Schwerpunkts eigenständig
	einzuarbeiten und erarbeitetes komplexes Wissen aufbereiten wiedergeben. Sie
	werden mit den Stärken und Herausforderungen der Projekt und Gruppenarbeit
	vertraut.
Inhalte:	Themen ergeben sich aus aktuellen Fragen der Forschung und Praxis mit einem
	Bezug zur Energie. In der Bearbeitung ist neben dem technischen Aspekt das
	Zusammenspiel mit anderen Disziplinen (Wirtschaft, , Marketing, Akzeptanz,
	Auswirkung auf die Gesellschaft, Gesundheit,) zu berücksichtigen.
	Projektteams von 2-5 Mitgliedern arbeiten an einer gemeinsamen
	Aufgabenstellung, wobei die Teammitglieder unterschiedliche Teilaspekte
	bearbeiten. Die Teams organisieren sich selbst, in regelmäßigen Treffen findet
	ein Austausch und eine Überprüfung des Projektfortschritts statt.
	Die Ergebnisse werden in geeigneter Form (z.B. Vortrag, Webauftritt) öffentlich
	präsentiert.
	Die Teams werden dabei von einem Dozenten begleitet.
Studien-/ Prüfungsleistungen:	Semesterbegleitende Aufgaben. Die Note entspricht der Note für das Modul.
Medienformen:	Tafel, Flipchart, Präsentationen (Beamer), Internetauftritt, bewegte Bilder.
Literatur:	Ist allgemein zur Einarbeitung nicht konkretisierbar, wird speziell
	bekanntgegeben.
Text für Transcript:	Interdisciplinary Project
	Group project on energy related topics. Knowledge transfer and application of
	methods to problems of practical importance using an interdisciplinar approach.
	Increase competence in project organization, interdisciplinary cooperation and
	communication.
	1

Gasförmige Kraftstoffe

Modulbezeichnung:	Gasförmige Kraftstoffe
Lehrveranstaltung:	Gasförmige Kraftstoffe
Kurzzeichen:	EGK
Fachnummer:	6590
Semester:	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Dozent/in:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Chemie, Thermodynamik, Verfahrenstechnik
Lernergebnisse /	Die Studierenden kennen Einsatzmöglichkeiten, Aufbau, Betriebsverhalten und
Kompetenzen:	Wirtschaftlichkeit von Energie-Technologien auf der Basis gasförmiger Kraftstoffe.
	Sie können die Einsatzbereiche der unterschiedlichen Kraftsstoffe und
	Technologien anhand vorgegebener Kriterien beurteilen
Inhalte:	Brennstoffzellen: Funktionsprinzipien, Betriebsverhalten, Auslegung, Kosten
	Brennstoffe für Brennstoffzellen
	Wasserstofftechnik: Verfahrenskonzepte zu Gewinnung, Transport, Speicherung
	und Nutzung von Wasserstoff; Entwicklungspotentiale, Randbedingungen (betrieblich, wirtschaftlich); Sicherheitsaspekte
	Erdgasnetze (Aufbau, Gasqualitäten, stoffliche- und energetische Übertragungsverluste, Gasspeicher)
	Flüssiggas
	Erzeugung und Aufbereitung von Biogas (Reinigung, Einspeisung ins Erdgasnetz), Verfahrenskonzepte, Anlagentechnik
	Mobile Nutzung gasförmiger Kraftstoffe
Studien-/ Prüfungsleistungen:	Mündliche Prüfung. Die Note entspricht der Note für das Modul.
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning
Literatur:	Töpler, J; Lehmann, J.: Wasserstoff und Brennstoffzelle, app 2014
	Warnatz, J; Maas, U.; Verbrennung: physikalisch-chemische Grundlagen,
	Modellierung und Simulation, Experimente, Schadstoffentstehung; R. W. Dibble (1997)
	Joos, F.; Technische Verbrennung: Verbrennungstechnik,
	Verbrennungsmodellierung, Emissionen; Springer 2006
Text für Transcript:	Gaseous Fuels
	Hydrogen technology. Natural gas, Biogas, deployment and storage, mobile applications

Mechatronik des Verbrennungsmotors

Modulbezeichnung:	Mechatronik des Verbrennungsmotors
Lehrveranstaltung:	Mechatronik des Verbrennungsmotors
Kurzzeichen:	EFM
Fachnummer:	6600
Semester:	Energietechnologie (BPO 20), 5. Semester
Modulbeauftragte/r:	Prof. Kolbenmaschinen und Mechatronik
Dozent/in:	Prof. Kolbenmaschinen und Mechatronik
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnolgie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Kolbenmaschinen, Flüssige Kraftstoffe 1, Automatisierungstechnik 1
Lernergebnisse /	Studierende kennen Methoden und Komponenten sowie Aufbau und
Kompetenzen:	Wirkungsweise des elektronischen Motormanagements. Sie können die
	physikalischen Wirkprinzipien unterschiedlichen Sensoren bzw. Aktoren
	zurodnen und diese bewerten.
Inhalte:	Aufbau und Funktion von Motorsteuersystemen,
	Motorsensorik (Bsp. Luftmenge, Kraftstoffeigenschaften,
	Verbrennungseigenschaften, Abgaszusammensetzung)
	Motoraktorik (Zündzeitpunktregelung, Vollvariable Ventilsteuerung,
	Einspritzverhalten, Zylinderabschaltung)
	Einbindung von Motorkraftwerken in die Anlagentechnik (BHKW)
Studien-/ Prüfungsleistungen:	Klausur(120 Minuten). Die Note entspricht der Note für das Modul.
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning
Literatur:	Handbuch Kraftfahrzeugelektronik, Henning Wallentowitz / Konrad Reif, Vieweg
	Teubner, 2. Aufl. 2011
	Elektronisches Management motorischer Fahrzeugantriebe, Rolf Isermann,
	Springer 2010 Mechatronik, Horst Czichos, Springer 2015
	Grundlagen Fahrzeug- und Motorentechnik, Hrsg. Konrad Reif, Springer 2017
	Grundlagen Motorentechnik und Motorsteuerung, Hrsg. Konrad Reif, Springer/
	Vieweg 2012
	Ottomotor-Management im Überblick , Hrsg. Konrad Reif, Springer 2015
	Dieselmotor-Management im Überblick, Hrsg. Konrad Reif, Springer 2014
Text für Transcript:	Motormanagement
	Systems for managing motors, sensors and actuators, motor vehicles and power
	plants

Flüssige Kraftstoffe 2

ge
•
n
ie können
nd
n der
)
,
ng zur
cte,
Press
eppert,
mentals,
ov, David
,
t on

Flüssige Kraftstoffe 1

Modulbezeichnung:	Flüssige Kraftstoffe 1
Lehrveranstaltung:	Flüssige Kraftstoffe 1
Kurzzeichen:	EKS
Fachnummer:	6611
Semester:	Energietechnologie (BPO 20), 4. Semester
Modulbeauftragte/r:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Dozent/in:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Chemie, Verfahrenstechnik, Thermodynamik 1
Lernergebnisse /	Studierende kennen unterschiedliche Prozessketten der Produktion von
Kompetenzen:	Kraftstoffen und deren Auswirkung auf das Produkt, ausgehend von Rohstoffen
	über die Veredlung bis zum verbrennungsmotortauglichen Kraftstoff sowie damit
	verbundene Kennwerte und deren analytischen Bestimmung. Sie können die
	Erkenntnisse auf neue Verfahren übertragen. Geeignete Analysemethoden
	können identifiziert werden,
Inhalte:	Nicht fossile und fossile Rohstoffquellen Bsp. Erdöl, Pflanzenöl oder
	Kohlenhydrate (Biomasse)
	Mechanische, physikalische und chemische Aufarbeitungsschritte
	-Analysenmethoden (Säurezahl, Jodazahl, (Headspace)-Gaschromatographie,
	HPLC, Polarimetrie, Energiedichte)
	-Eigenschaften (Oberflächenspannug, Viskosität, Oktanzahl, Cetanzahl)
Studien-/ Prüfungsleistungen:	Mündliche Prüfung. Die Note entspricht der Note für das Modul. Zulassung zur
	Prüfung i.A. von Teilnahme
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning
Literatur:	Kaltschmitt, Hartmann, Hofbauer: Energie aus Biomasse, Springer Vieweg 2016
	Winacker, Dittmeyer: Chemische Technik, Band 4, Prozesse und Produkte,
	Wiley-VCH 2003
Text für Transcript:	Liquid Fuels 1
	Fossile and non-fossile fuels, pocessing, analysis, properties

Grundlagen der Chemie

Modulbezeichnung:	Grundlagen der Chemie
Lehrveranstaltung:	Grundlagen der Chemie
Kurzzeichen:	ECH
Fachnummer:	6630
Semester:	Energietechnologie (BPO 20), 1. Semester
Modulbeauftragte/r:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Dozent/in:	M.Sc. J. Fröhlich
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 1 SWS
	Praktikum / 1 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
Lernergebnisse /	Die Studierenden können chemische Formeln aufstellen u. chemische
Kompetenzen:	Gleichungen formulieren, Atombau und chemische Bindungstypen erläutern,
	Stoffklasssen chemischer Substanzen unterscheiden und zuordnen und
	eigenständig stöchiometrische Bilanzierungen vornehmen.
Inhalte:	Atombau und chemische Bindung, Stöchiometrie, chemisches Gleichgewicht,
	Thermodynamik chemischer Prozesse, Massenwirkungsgesetz, Säure und Base-
	Reaktionen, Redoxreaktionen, ausgewählte Bereiche der anorganischen und
	organischen Chemie
Studien-/ Prüfungsleistungen:	Klausur(120 Minuten). Die Note entspricht der Note für das Modul. Zulassung zur
	Prüfung i.A. von Teilnahme
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning, PRAKTIKUM
Literatur:	Ch. Mortimer, U. Müller: Chemie: das Basiswissen der Chemie, Thieme 2015
	H. Hart: Organische Chemie. Wiley VCH 2007
	Vinke: Chemie für Ingenieure, Oldenbourg 2008
Text für Transcript:	Fundamental Chemistry
	Atoms, chemical bonds, elements and compounds, reactions, stoichiometry

Rohrleitungstechnik und - anlagen

Modulbezeichnung:	Rohrleitungstechnik und - anlagen
Lehrveranstaltung:	Rohrleitungstechnik und - anlagen
Kurzzeichen:	ZRT
Fachnummer:	6661
Semester:	Energietechnologie (BPO 20), 5. Semester
Modulbeauftragte/r:	Prof. Dr. Ing. G. Klepp
Dozent/in:	Prof. Dr. Ing. G. Klepp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach in der Studienrichtung Fluidsystemtechnik
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Fluiddynamik, Maschinenelemente
Lernergebnisse /	Selbstständige Planung, Auslegung und Dimensionierung von Rohrleitungen
Kompetenzen:	Rohrnetzen und Anlagen und deren Komponenten
Inhalte:	Rohre: Normung. Fliessbilder, Dimensionierung (Wanddicke, Lagerung)
	Dämmung, Dichtheit, Strömungstechnik (kompressible, inkompressible Medien,
	Mehrphasenströmung, nicht-Newtonsche Medien,. Kavitation, Druckstoß)
	Ventile und Armaturen : Absperr- und Regelarmaturen
	Auslegung von Rohrnetzen
Studien-/ Prüfungsleistungen:	Mündliche Prüfung. Die Note entspricht der Note für das Modul.
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning
Literatur:	W. Wagner: Rohrleitungstechnik, Vogel 2006
	W. Wagner: Regelarmaturen, Vogel
	W. Franke, B. Platzer: Rohrleitungen, Hanser 2013
Text für Transcript:	Piping Technology:
	Dimensions, insulation, leak-tightness, fluid flow, valves, pipe-networks

Energieanlagen

Modulbezeichnung:	Energieanlagen
Lehrveranstaltung:	Energieanlagen
Kurzzeichen:	EAN
Fachnummer:	6690
Semester:	Energietechnologie (BPO 20), 5. Semester
Modulbeauftragte/r:	Prof. Kraftstoffsystemtechnik und Abgasnachbehandlung
Dozent/in:	Prof. Dr. Ing. G. Klepp
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO: Grundkenntnisse entspr. der Zulassungsvoraussetzungen
	Empfohlen: Thermodynamik, Fluiddynamik, Kolbenmaschinen,
	Strömungsmaschinen, Verfahrenstechnik
Lernergebnisse /	Die Studierenden kennen Aufbau, Funktionsweise und Betriebsverhalten von
Kompetenzen:	Kraftwerken und Wärmepumpen/Kälteanlagen. Sie können diese bewerten und
	einen geeigneten Prozess auswählen. Sie können geeignete Methoden zur
	Speicherung, Umwandlung und Verteilung der Energie identifizieren.
Inhalte:	Thermodynamische Vergleichsprozesse und reale Prozesse (Joule, Stirling,
	Clausius-Rankine, Organic-Rankine, Kalt-Dampf) und deren Variationen.
	Kraftwerkstechnik (Feuerungen, Wärmeübertrager, Kühlsysteme,
	Speisewasserversorgung) Rauchgasreinigung (Entstaubung, Entschwefelung,
	Stickoxidreduktion). Wärmepumpen. Energieverteilung und Speicherung
Studien-/ Prüfungsleistungen:	Klausur(120 Minuten). Die Note entspricht der Note für das Modul.
Medienformen:	Präsentationen (Beamer), Tafel, E-Learning
Literatur:	Strauss, K.: Krafterkstechnik, Springer
	G. Cerbe, G Wilhelms: Technische Thermodynamik
	Dohmann, J.; Thermodynamik der Kälteanlagen und Wärmepumpen, Springer
	Vieweg 2016
	Zahoransky: Energietechnik, Vieweg 2007
Text für Transcript:	Energy installations and power plants
	Standard Process and real process. Power plant technology. Heat Pumps.
	Energy storage and distribution

Projekt- und Kostenmanagement in der Produktentwicklung

Modulbezeichnung:	Projekt- und Kostenmanagement in der Produktentwicklung
Lehrveranstaltung:	Projekt- und Kostenmanagement in der Produktentwicklung
Kurzzeichen:	EPM
Fachnummer:	6700
Semester:	Mechatronik (BPO 20), 5. Semester
	Maschinenbau (BPO 20), 5. Semester
	Virtuelle Produktentwicklung (BPO 20), 5. Semester
	Energietechnologie (BPO 20), 1. Semester
Modulbeauftragte/r:	Prof. Dr. Sören Wilhelms
Dozent/in:	Prof. Dr. Sören Wilhelms
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Maschinenbau(B.Sc.), Pflichtmodul
	Mechatronik(B.Sc.), Pflichtmodul
	Energietechnologie (B.Eng.), Pflichtmodul
	Virtuelle Produktentwicklung (B.Sc.), Wahlpflichtmodul
Lehrform / SWS:	Vorlesung / 2 SWS
	Übung / 2 SWS
Workload:	150 h davon 60 h Präsenz- und 90 h Eigenstudium
Credits:	5
Teilnahmevoraussetzungen:	
Lernergebnisse /	Sie kennen die wesentlichen Merkmale der Arbeit in Projektform. Sie können die
Kompetenzen:	vorgestellten Methoden der Projektarbeit im Umfeld der Konstruktionsarbeit oder
	an Projektbeispielen aus dem Hochschulbereich anwenden.
	Sie haben ein Bewusstsein für den Kostenaspekt der Produktentwicklung erlangt.
	Sie können einfache Kostenabschätzungen für Konstruktionen ausführen.
Inhalte:	Grundlagen der Projektarbeit. Projektphasen und -organisation. Projektumfeld
	und Stakeholderanalyse. Zielformulierung. Projektstruktur-, Aufwands-, Ablauf-,
	Termin- und Ressourcenplanung. Projektsteuerung und Fortschrittsüberwachung.
	Dokumentation. Projekte und Gruppenarbeit. Beschlüsse, Konfliktmanagement
	und Effektivität in der Projektarbeit.
	Bedeutung des Kostenmanagements für die Produktentwicklung. Methoden des
	Kostenmanagements. Beeinflussbarkeit der Lebenslaufkosten (TCO) und der
	Selbstkosten. Grundlagen der Kostenrechnung. Kostenfrüherkennung.
Studien-/ Prüfungsleistungen:	Klausur (60 Minuten), benotet (entspricht Modulnote)
Medienformen:	Tafel, Beamer, ausgeteilte Unterlagen, ILIAS

Literatur:	Kuster, J.; Huber, E.; Lippmann, R.; Schneider, E.; Witschi, U.; Wüst, R.:
	Handbuch Projektmanagement. Heidelberg : Springer, 2011. – ISBN
	978-3-642-21242-0
	Jakoby, W.: Projektmanagement für Ingenieure. Wiesbaden : Springer, 2015. –
	ISBN 978-3-658-02607-3
	Jakoby, W.: Intensivtraining Projektmanagement. Wiesbaden : Springer, 2015. –
	ISBN 978-3-658-08283-3
	DIN ISO 21500:2016-02. Leitlinien Projektmanagement.
	Ehrlenspiel, K.; Kiewert, A.; Lindemann, U.; Mörtl, M.: Kostengünstig Entwickeln
	und Konstruieren. Berlin: Springer, 2014. – ISBN 978-3-642-41958-4
	Feldhusen, J.; Grote, KH. (Hrsg.): Pahl/Beitz Konstruktionslehre – Methoden
	und Anwendung erfolgreicher Produktentwicklung. Berlin: Springer, 2013. – ISBN
	978-3-642-29568-3, Kap. 3.7 (Kostenmanagement)
	Mörtl, M.: Kostenrechnung in der Konstruktion. In: Rieg, F.; Steinhilper, R.:
	Handbuch Konstruktion. München: Carl Hanser, 2012. –ISBN
	978-3-446-43000-6, Kap. III-1
	VDI 2234:1990-01. Wirtschaftliche Grundlagen für den Konstrukteur.
	VDI 2235:1987-10. Wirtschaftliche Entscheidungen beim Konstruieren –
	Methoden und Hilfen.
Text für Transcript:	Project Management and Design for Cost
	Basics of work in projects. Initiation and organisation of projects. Goal definition,
	sequence planning and time scheduling. Project control. Documentation. Projects
	and teamwork.
	Relevance of cost management for product development. Methods for cost
	management. Influencability of life cycle costs (TCO) and manufacturing costs.
	Basics of cost accounting. Cost estimation in early design phases.

Technische Mechanik 1

Modulbezeichnung:	Technische Mechanik 1
Lehrveranstaltung:	Technische Mechanik 1
Kurzzeichen:	BTM1
Fachnummer:	7209
Semester:	Energietechnologie (BPO 20), 1. Semester
Modulbeauftragte/r:	Prof. DrIng. Eva Scheideler
Dozent/in:	Prof. DrIng. Eva Scheideler
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnologie (B.Eng.) Pflichtfach
Lehrform / SWS:	Seminaristische Vorlesung: 2 SWS/ 30 h, Übung: 2 SWS/ 30 h
Workload:	150 h
Credits:	5
Teilnahmevoraussetzungen:	nach BPO
Lernergebnisse /	Die Studierenden verstehen elementare Zusammenhänge der Statik. Darüber
Kompetenzen:	hinaus
	exemplarisches Erlernen/Einüben Naturwissenschafts-basierter
	Ingenieurkompetenzen:
	Abstraktion technischer Gebilde/ Konstruktionen zu Problem-adäquaten
	Modellen;
	physikalisch-mathematische Beschreibung des Modellverhaltens; mathematische
	Problemlösung; ingenieurmäßige Deutung der mathematischen Lösung.
Inhalte:	Elementare Grundlagen: Gliederung der Mechanik, Grundgrößen,
	Maßeinheiten,
	Kraftbegriff
	Axiome der Statik: Reaktions-, Parallelogramm-, Verschiebungs- u.
	Trägheitsaxiom
	• Ergänzende Grundlagen: Kraftübertragung, Auflagerreaktionen, Abgrenzen,
	Freischneiden, innere u. äußere Kräfte, symbolische Darstellung, Pendelstütze u.
	Seil
	Seite 1
	Modulhandbuch Fachbereich Produktion und Wirtschaft, Technische Hochschule
	OWL
	Zentrales ebenes Kräftesystem
	Allgemeines ebenes Kräftesystem: parallele Kräfte, Moment, Äquivalenz u.
	Gleichgewicht
	Tragwerke (Mehrkörpersysteme): Auflagersystematik, statische Bestimmtheit,
	rechnerische Behandlung• Lasten u. Schnittgrößen des Balkens: Streckenlast,
	Querkraft,
	Biegemoment, Normalkraft
	Fachwerk: Begriff, allgemeine rechnerische Behandlung,
	Reibung: Coulombsche Reibgesetze, Seilreibung
	Schwerpunkt, Flächenmomente 2. Grades
Studien-/ Prüfungsleistungen:	Klausur (90 Minuten), benotet.
Medienformen:	Tafel, Video, Präsentationen

Literatur:	Gabbert/Raecke: Technische Mechanik für Wirtschaftsingenieure, Hanser
	Gross/Hauger/Schröder/Wall: Technische Mechanik 1 – Statik. Springer
	Hibbeler: Technische Mechanik 1 – Statik. Pearson
	Hauger/Mannl/Wall/Werner: Aufgaben zu Technische Mechanik 1-3. Springer
	• Eller/Holzmann/Meyer/Schumpich: Technische Mechanik – Statik. Springer
	Vieweg
	Romberg, O., Hinrichs, N., Keine Panik vor Mechanik, Braunschweig,
Text für Transcript:	Technical Mechanics 1

Technische Mechanik 2

Modulbezeichnung:	Technische Mechanik 2
Lehrveranstaltung:	Technische Mechanik 2
Kurzzeichen:	BTM2
Fachnummer:	7242
Semester:	Energietechnologie (BPO 20), 2. Semester
Modulbeauftragte/r:	Prof. DrIng. Eva Scheideler
Dozent/in:	Prof. DrIng. Eva Scheideler
Unterrichtssprache:	deutsch
Zuordnung zum Curriculum:	Energietechnology (B.Eng.) Pflichtfach
Lehrform / SWS:	Seminaristische Vorlesung: 2 SWS/ 30 h, Übung: 2 SWS/ 30 h
Workload:	Selbststudium: 90h, Kontaktzeit: 4 SWS / 60 h
Credits:	5
Teilnahmevoraussetzungen:	Nach BPO
Lernergebnisse /	Verständnis der elementaren Zusammenhänge der Elastostatik (Festigkeitslehre)
Kompetenzen:	sowie der
·	Kinematik und Kinetik. Darüber hinaus exemplarisches Erlernen/Einüben
	Naturwissenschafts-basierter Ingenieurkompetenzen: Abstraktion technischer
	Gebilde/Konstruktionen zu Problem-adäquaten Modellen;
	physikalisch-mathematische
	Beschreibung des Modellverhaltens; mathematische Problemlösung;
	ingenieurmäßige
	Deutung der mathematischen Lösung.
Inhalte:	Spannungsbegriff: Normalspannung, Schubspannung
	Formänderungen: Dehnung u. Verzerrung
	Stoffgesetze: Zugversuch, Schubverformung, Wärmedehnung
	Bauteile unter Zug- u. Druckbeanspruchung
	Seite 1
	Modulhandbuch Fachbereich Produktion und Wirtschaft, Technische Hochschule
	OWL
	Bauteil-Dimensionierung: Zulässige Spannung und Sicherheit, ruhende und
	dynamische
	Beanspruchung
	Balkenbiegung: Flächenträgheitsmomente, Satz von Steiner, Biegespannungen,
	Durchbiegung, Biegelinie, Randbedingungen bei Biegeproblemen
	Statisch unbestimmte Systeme: Problemstellung und Lösungskonzept
	Torsion: Kreis- u. Kreisringquerschnitt, dünnwandige offene Profile und
	Hohlquerschnitte
	Knicken: Eulersche Knickkraft, zulässige Druckspannung u. Schlankheitsgrad
	Punkt-Kinematik: Ort, Geschwindigkeit u. Beschleunigung, Kreisbewegung
	Kinetik des Massenpunktes: Newtonsche Axiome, Impulssatz, Arbeit, Leistung,
	kinetische
	Energie, potentielle Energie, Energiesatz
Studien-/ Prüfungsleistungen:	Klausur (120 Minuten), benotet.
Medienformen:	Seminaristische Vorlesung mit dem Einsatz von Tafel, Video, Präsentationen

Literatur:	Gabbert/Raecke Technische Mechanik für Wirtschaftsingenieure
	Gross/Hauger/Schröder/Wall: Technische Mechanik 3 – Kinetik. Springer
	Hibbeler: Technische Mechanik 3 – Dynamik. Pearson
	Hauger/Mannl/Wall/Werner: Aufgaben zu Technische Mechanik 1-3. Springer
	Eller/Holzmann/Meyer/Schumpich: Technische Mechanik – Kinematik und
	Kinetik.
	Springer Vieweg
Text für Transcript:	Technical Mechanics 2

Index

	Seite
Frontseite	1
Elektrotechnik	2
Werkstoffkunde 1	3
Werkstoffkunde 2	4
Grundlagen Messtechnik	5
Elektromechanische Antriebstechnik	7
Strömungsmaschinen	9
Hydraulik und Pneumatik	10
Technisches Englisch	12
Automatisierungstechnik	15
Regelungstechnik	16
Maschinenelemente	18
Grundlagen Fluiddynamik	19
Fluiddynamik und -simulation	20
Kolbenmaschinen	21
Mathematik 1	23
Mathematik 2	24
Mathematik 3	25
Mathematik 4	26
Thermodynamik 1	27
Thermodynamik 2	28
CAD und Grundlagen des Konstruierens	30
Bachelorarbeit und Kolloquium	31
Studienarbeit	32
Verfahrenstechnik	33
Energie-Praktikum	34
Interdisziplinäre Projektarbeit	35
Gasförmige Kraftstoffe	36
Mechatronik des Verbrennungsmotors	
Flüssige Kraftstoffe 2	38
Flüssige Kraftstoffe 1	39
Grundlagen der Chemie	
Rohrleitungstechnik und - anlagen	41
Energieanlagen	42
Projekt- und Kostenmanagement in der Produktentwicklung	43
Technische Mechanik 1	
Technische Mechanik 2	47
Index	49