

Bionic Smart Factory 4.0 – Fabrikstruktur zum industriellen 3D-Druck

Markus Möhrle

21. Fachtagung Rapid Prototyping Hochschule Ostwestfalen-Lippe

4. November 2016

Content

Introduction: The Light Experts

Strategy and business models: Future applications for AM

Bionic products: Increasing demand for the smart factory

Bionic Smart Factory: Factory structure for industrial 3D printing

Content

Introduction: The Light Experts

Strategy and business models: Future applications for AM

Bionic products: Increasing demand for the smart factory

Bionic Smart Factory: Factory structure for industrial 3D printing

Light Experts – Competence Center for Light Engineering

LZN and its partners were awarded for outstanding achievements

Finalist of "Innovationspreis der deutschen Wirtschaft"

First additive manufactured metal part for civil aircraft

...developed by

- Bionic lightweight construction design in TiAl6V4
- Successfully tested
- First flight successfully completed

Deutscher Zukunftspreis 2015 – Awarded "Circle of the best"

Project Team

Project

"3-D-Printing in civil aircraft production – the next industrial revolution takes off"

Content

Introduction: The Light Experts

2 Strategy and business models: Future applications for AM

Bionic products: Increasing demand for the smart factory

Bionic Smart Factory: Factory structure for industrial 3D printing

Business models are a combination of market, resource and profit model – Overview

Primary focus on new markets and products, followed by improvement of resource model

Source: LZN Light Alliance survey 2016

Additive manufacturing – The technology enables for change of old and invention of new business models

In place... (selection)

Additive Industries

CONCEPTLASER

Machine manufacturing Smart platform approaches

Mass customization

Bionic products – Fully integrated and resource efficient

Adapted business models **New business** models

Build to print incl. prototypes **Engineering and** related services

Decentralized spare parts on demand

Decentralized production (Bionic Smart Factory)

Hypothesis: Digital merger of design and process improves time, cost and quality

Industry 4.0 - Merger of design and process

Details

Direct production with standardized data formats enables discarding of product-specific industrialization – advantages:

- Efficient collaboration, regardless of location, internal and external with partners and service providers possible, e.g. through
 - Research institutes
 - Development service providers
- Increased merger through data exchange of:
 - Specification / development
 - Construction / design
 - Production
- Crucial: design guidelines

Hypothesis: Design and sales of industrial goods possible through individuals in the future

Corporate landscape industrial goods

Cost for the foundation of a internet-tech-startup ['000 USD]

Also transferable to mechanical products?

Source: Mark Suster (Upfront Ventures)

Details

Declining capital requirements for the foundation of tech-Startups is transferred to the segment of mechanical products

- No direct access to production facilities necessary
- Investments in production facilities can be omitted

In the future, individuals are able to implement business ideas with mechanical products themselves!

Additive manufacturing should base on a suitable cost structure

Subcontracting

Investment: ~ 0,1 m EUR

Also integrated are ...

- Initiation and (basic) training of staff
- Engineering services

Subcontracted will be...

All processing activities

Integrated additive manufacturing

Investment: > 1,5 m EUR

Also integrated are ...

- Additive manufacturing machines for plastic und metal
- Wire eroding

Subcontracted will be...

Post-processing steps

Complete additive plant

Investment: > 5 m EUR

Also integrated are ...

- Additional additive manufacturing machines for metal
- Heat treatment
- Cutting finish

Subcontracted will be...

Capital intense postprocessing steps (e. g. HIP)

Content

Introduction: The Light Experts

Strategy and business models: Future applications for AM

Bionic products: Increasing demand for the smart factory

Bionic Smart Factory: Factory structure for industrial 3D printing

The complexity advantage allows applications using functional integration, bionic design and lattices

Lightweight Design through topology optimization/bionic interpretation – Example: Brackets

Weight Reduction of 20 %

Cost reduction for series production for selected products with only low design modifications

Conventional Design

LAM-Design

GROUP

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages Weight Reduction: 35 %

Cost Reduction: 20 %

Die Untersuchungen wurden aus Haushaltsmitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi), FKZ 20W1305G, gefördert.

The best of two worlds: Hybrid space frame for new lightweight automotive concepts

- Nearly tool-free manufacturing of single components and technology demonstrators
- Virtual development of a highly functional automotive lightweight structure
- New laser-based joining concepts and manufacturing layouts

A joint innovation project of:

THOR implements agile principles in advanced development – Enabled by additive manufacturing

Content

Introduction: The Light Experts

Strategy and business models: Future applications for AM

Bionic products: Increasing demand for the smart factory

Bionic Smart Factory:
Factory structure for industrial 3D printing

Manufacturing plants are typically developed from target setting to final layout in three steps

Requirements and targets

- Definition of **performance** requirements and target budgets
- Definition of production program (product requirements)
- Derivation of technology sequence from production program
- Identification of further requirements (e.g. existing production equipment and facility)

Plant structure definition

- Definition of required machinery according to the additive manufacturing process chain -Based on
 - Capacity requirements of planned products and services
 - Mode of value creation
 - Make or buy decision
- Deriving the **need for financing**
- Definition of an organization structure

Plant layout and visualization

- Creation of a layout concept to fulfill the requirements (machines and infrastructure) under consideration of requirements and targets
- Taking into account the available building infrastructure
- Visualization (2 and 3 dimensional)

When creating a factory structure, lead time and cost are the most important goals

Factory structure

Pareto front defined by lead time and cost

Lead time (average, deviation)

Costs per period

Pareto frontier

Factory's performance

By discrete event study, different factory set-ups can be easily evaluated

Features

- Flexible simulation of system load and system capacities
- Comprehensive process chain in model included
- Industrial model derived from real factory observations (time management, process chain, resource requirements)

The steep pareto front makes a business case related factory structure definition strongly necessary

Production program single piece and small series

4,0

Manufacturing costs per year [EUR m]

Production program Mass production

3,0

5,0

2,0

5,0

6,0

The steep pareto front makes a business case related factory structure definition strongly necessary

Production program single piece and small series

Production program Mass production

Full process chain lead times can be fast, but how can they become really rapid?

Pareto front defined by lead time and cost

Process improvement

2 Product design

- Design for cost/bionic design
- Design for low post processing effort (HIP, machining)
- ...

3 Dispatching mode

- Build job allocation
- Independent job-setup
- · ...
- **4** Supply chain improvement
- Distributed/local manufacturing
- ...

Additive machine and manual process with the most significant cost reduction potential

Cost reduction potential when doubling machine speed

[% of manufacturing cost¹⁾]

Indicative

Details

- Considered production program: Single piece and small series production with annual production rate of 13.000 units
- Analysis: Cost reduction potential with doubled machine speed
- Basis: Discrete event model "Werkskonzepte im Kontext additiver Fertigung" with industrial model from LZN/iLAS

26

¹⁾ Excluding: material, area, building, overhead costs

Bionic Smart Factory: The approach for global, digital manufacturing

A Smart Platform simplifies data handling and enables for automation of data processing chain

Smart Platform: Interface/optimization Job preparation

Additive manufacturing

Post processing

CAD File Upload

Value Add Services

- Parts on Demand:Online (Spare) Parts Catalog
- Automated Processing of Geometry Data:
 - Offer Calculation
 - Design Checking
 - Analysis of Potentials and Part Screening

Cloud Based Order Processing

Bionic Smart Factory is highly scalable – Quick response to a changed production program

Bionic Smart Factory reduces lead times to near on demand – Machine productivity increase necessary

Thank you very much for your attention!

Markus Möhrle
markus.moehrle@lzn-hamburg.de
LZN Laser Zentrum Nord GmbH
Am Schleusengraben 14
21029 Hamburg-Bergedorf

