Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture

A. Hinterleitner, R. Schulz, L. Hans, A. Subbotin, N. Barthel, N. Pütz, M. Rosellen, T. Bartz-Beielstein, C. Geng, P. Priss,   Applied Sciences : Open Access Journal 13 (2023).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz (wiss.) | Veröffentlicht | Englisch
Autor*in
; ; ; ; ; ; ; ; ;
Abstract
Cyber-Physical Systems (CPS) play an essential role in today’s production processes, leveraging Artificial Intelligence (AI) to enhance operations such as optimization, anomaly detection, and predictive maintenance. This article reviews a cognitive architecture for Artificial Intelligence, which has been developed to establish a standard framework for integrating AI solutions into existing production processes. Given that machines in these processes continuously generate large streams of data, Online Machine Learning (OML) is identified as a crucial extension to the existing architecture. To substantiate this claim, real-world experiments using a slitting machine are conducted, to compare the performance of OML to traditional Batch Machine Learning. The assessment of contemporary OML algorithms using a real production system is a fundamental innovation in this research. The evaluations clearly indicate that OML adds significant value to CPS, and it is strongly recommended as an extension of related architectures, such as the cognitive architecture for AI discussed in this article. Additionally, surrogate-model-based optimization is employed, to determine the optimal hyperparameter settings for the corresponding OML algorithms, aiming to achieve peak performance in their respective tasks.
Erscheinungsjahr
Zeitschriftentitel
Applied Sciences : open access journal
Band
13
Zeitschriftennummer
20
Artikelnummer
11506
ISSN
ELSA-ID

Zitieren

Hinterleitner A, Schulz R, Hans L, et al. Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.   Applied Sciences : open access journal. 2023;13(20). doi:10.3390/app132011506
Hinterleitner, A., Schulz, R., Hans, L., Subbotin, A., Barthel, N., Pütz, N., Rosellen, M., Bartz-Beielstein, T., Geng, C., & Priss, P. (2023). Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.   Applied Sciences : Open Access Journal, 13(20), Article 11506. https://doi.org/10.3390/app132011506
Hinterleitner A et al. (2023) Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.   Applied Sciences : open access journal 13.
Hinterleitner, Alexander, Richard Schulz, Lukas Hans, Aleksandr Subbotin, Nils Barthel, Noah Pütz, Martin Rosellen, Thomas Bartz-Beielstein, Christoph Geng, and Phillip Priss. “Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.”   Applied Sciences : Open Access Journal 13, no. 20 (2023). https://doi.org/10.3390/app132011506.
Hinterleitner, Alexander, Richard Schulz, Lukas Hans, Aleksandr Subbotin, Nils Barthel, Noah Pütz, Martin Rosellen, Thomas Bartz-Beielstein, Christoph Geng und Phillip Priss. 2023. Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.   Applied Sciences : open access journal 13, Nr. 20. doi:10.3390/app132011506, .
Hinterleitner, Alexander ; Schulz, Richard ; Hans, Lukas ; Subbotin, Aleksandr ; Barthel, Nils ; Pütz, Noah ; Rosellen, Martin ; Bartz-Beielstein, Thomas ; u. a.: Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture. In:   Applied Sciences : open access journal Bd. 13. Basel, MDPI AG (2023), Nr. 20
A. Hinterleitner, R. Schulz, L. Hans, A. Subbotin, N. Barthel, N. Pütz, M. Rosellen, T. Bartz-Beielstein, C. Geng, P. Priss, Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture,   Applied Sciences : Open Access Journal. 13 (2023).
A. Hinterleitner et al., “Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture,”   Applied Sciences : open access journal, vol. 13, no. 20, Art. no. 11506, 2023, doi: 10.3390/app132011506.
Hinterleitner, Alexander, et al. “Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.”   Applied Sciences : Open Access Journal, vol. 13, no. 20, 11506, 2023, https://doi.org/10.3390/app132011506.
Hinterleitner, Alexander u. a.: Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture, in:   Applied Sciences : open access journal 13 (2023), H. 20.
Hinterleitner A, Schulz R, Hans L, Subbotin A, Barthel N, Pütz N, et al. Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture.   Applied Sciences : open access journal. 2023;13(20).

Export

Markierte Publikationen

Open Data ELSA

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar