PGNAA Spectral Classification of Metal With Density Estimations
H. Shayan, K. Krycki, M. Doemeland, M. Lange-Hegermann, IEEE Transactions on Nuclear Science 70 (2023) 1171–1177.
Download
          Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
        
            
            
            Zeitschriftenaufsatz (wiss.)
            
            
            | Veröffentlicht
            
            
              |              Englisch
              
            
          
        Autor*in
		Abstract
    For environmental, sustainable economic and political reasons, recycling processes are becoming increasingly important, aiming at a much higher use of secondary raw materials. Currently, for the copper and aluminum industries, no method for the non-destructive online analysis of heterogeneous materials is available. The prompt gamma neutron activation analysis (PGNAA) has the potential to overcome this challenge. A difficulty when using PGNAA for online classification arises from the small amount of noisy data, due to short-term measurements. In this case, classical evaluation methods using detailed peak by peak analysis fail. Therefore, we propose to view spectral data as probability distributions. Then, we can classify material using maximum log-likelihood with respect to kernel density estimation and use discrete sampling to optimize hyperparameters. For measurements of pure aluminum alloys we achieve near-perfect classification of aluminum alloys under 0.25 s.
    
  Stichworte
    
  Erscheinungsjahr
    
  Zeitschriftentitel
    IEEE Transactions on Nuclear Science
  Band
      70
    Zeitschriftennummer
      6
    Seite
      1171-1177
    ISSN
    
  eISSN
    
  ELSA-ID
    
  Zitieren
Shayan H, Krycki K, Doemeland M, Lange-Hegermann M. PGNAA Spectral Classification of Metal With Density Estimations. IEEE Transactions on Nuclear Science. 2023;70(6):1171-1177. doi:10.1109/tns.2023.3242626
    Shayan, H., Krycki, K., Doemeland, M., & Lange-Hegermann, M. (2023). PGNAA Spectral Classification of Metal With Density Estimations. IEEE Transactions on Nuclear Science, 70(6), 1171–1177. https://doi.org/10.1109/tns.2023.3242626
    Shayan H et al. (2023) PGNAA Spectral Classification of Metal With Density Estimations. IEEE Transactions on Nuclear Science 70, 1171–1177.
    Shayan, Helmand, Kai Krycki, Marco Doemeland, and Markus Lange-Hegermann. “PGNAA Spectral Classification of Metal With Density Estimations.” IEEE Transactions on Nuclear Science 70, no. 6 (2023): 1171–77. https://doi.org/10.1109/tns.2023.3242626.
    Shayan, Helmand, Kai Krycki, Marco Doemeland und Markus Lange-Hegermann. 2023. PGNAA Spectral Classification of Metal With Density Estimations. IEEE Transactions on Nuclear Science 70, Nr. 6: 1171–1177. doi:10.1109/tns.2023.3242626, .
    Shayan, Helmand ; Krycki, Kai ; Doemeland, Marco ; Lange-Hegermann, Markus: PGNAA Spectral Classification of Metal With Density Estimations. In: IEEE Transactions on Nuclear Science Bd. 70. New York, NY, IEEE (2023), Nr. 6, S. 1171–1177
    H. Shayan, K. Krycki, M. Doemeland, M. Lange-Hegermann, PGNAA Spectral Classification of Metal With Density Estimations, IEEE Transactions on Nuclear Science. 70 (2023) 1171–1177.
    H. Shayan, K. Krycki, M. Doemeland, and M. Lange-Hegermann, “PGNAA Spectral Classification of Metal With Density Estimations,” IEEE Transactions on Nuclear Science, vol. 70, no. 6, pp. 1171–1177, 2023, doi: 10.1109/tns.2023.3242626.
    Shayan, Helmand, et al. “PGNAA Spectral Classification of Metal With Density Estimations.” IEEE Transactions on Nuclear Science, vol. 70, no. 6, 2023, pp. 1171–77, https://doi.org/10.1109/tns.2023.3242626.
    Shayan, Helmand u. a.: PGNAA Spectral Classification of Metal With Density Estimations, in: IEEE Transactions on Nuclear Science 70 (2023), H. 6,  S. 1171–1177.
    Shayan H, Krycki K, Doemeland M, Lange-Hegermann M. PGNAA Spectral Classification of Metal With Density Estimations. IEEE Transactions on Nuclear Science. 2023;70(6):1171–7.