Deep learning-based localisation of combine harvester components in thermal images
H. Senke, D. Sprute, U. Büker, H. Flatt, Deep Learning-Based Localisation of Combine Harvester Components in Thermal Images, KIT Scientific Publishing, 2024.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzband - Beitrag
| Veröffentlicht
| Englisch
Autor*in
Abstract
<jats:p>It is crucial to identify defective machine components
in production to ensure quality. Some components generate heat
when defective, so automating the inspection process with a
thermal imaging camera can provide qualitative measurements.
This work aims to use computer vision methods to locate these
components in thermal images. Since there is currently no
comparison of object detection and semantic segmentation algorithms
for this use case, this study compares different architectures
with the goal of localising these components for further
defect inspection. Moreover, as there are currently no datasets
for this use case, this study contributes a novel annotated dataset
of thermal images of combine harvester components. The different
algorithms are evaluated based on the quality of their predictions
and their suitability for further defect inspection. As
semantic segmentation and object detection cannot be directly
compared with each other, custom weighted metrics are used.
The architectures evaluated include RetinaNet, YOLOV8 Detector,
DeepLabV3+, and SegFormer. Based on the experimental
results, semantic segmentation outperforms object detection regarding
the use case, and the SegFormer architecture achieves
the best results with a weighted MeanIOU of 0.853.</jats:p>
Erscheinungsjahr
Titel Konferenzband
Forum Bildverarbeitung 2024 = Image Pocessing Forum 2024
ISBN
ELSA-ID
Zitieren
Senke H, Sprute D, Büker U, Flatt H. Deep Learning-Based Localisation of Combine Harvester Components in Thermal Images. KIT Scientific Publishing; 2024. doi:10.58895/ksp/1000174496-7
Senke, H., Sprute, D., Büker, U., & Flatt, H. (2024). Deep learning-based localisation of combine harvester components in thermal images. In Forum Bildverarbeitung 2024 = Image Pocessing Forum 2024. KIT Scientific Publishing. https://doi.org/10.58895/ksp/1000174496-7
Senke H et al. (2024) Deep Learning-Based Localisation of Combine Harvester Components in Thermal Images. KIT Scientific Publishing.
Senke, Hanna, Dennis Sprute, Ulrich Büker, and Holger Flatt. Deep Learning-Based Localisation of Combine Harvester Components in Thermal Images. Forum Bildverarbeitung 2024 = Image Pocessing Forum 2024. KIT Scientific Publishing, 2024. https://doi.org/10.58895/ksp/1000174496-7.
Senke, Hanna, Dennis Sprute, Ulrich Büker und Holger Flatt. 2024. Deep learning-based localisation of combine harvester components in thermal images. Forum Bildverarbeitung 2024 = Image Pocessing Forum 2024. KIT Scientific Publishing. doi:10.58895/ksp/1000174496-7, .
Senke, Hanna ; Sprute, Dennis ; Büker, Ulrich ; Flatt, Holger: Deep learning-based localisation of combine harvester components in thermal images : KIT Scientific Publishing, 2024
H. Senke, D. Sprute, U. Büker, H. Flatt, Deep learning-based localisation of combine harvester components in thermal images, KIT Scientific Publishing, 2024.
H. Senke, D. Sprute, U. Büker, and H. Flatt, Deep learning-based localisation of combine harvester components in thermal images. KIT Scientific Publishing, 2024. doi: 10.58895/ksp/1000174496-7.
Senke, Hanna, et al. “Deep Learning-Based Localisation of Combine Harvester Components in Thermal Images.” Forum Bildverarbeitung 2024 = Image Pocessing Forum 2024, KIT Scientific Publishing, 2024, https://doi.org/10.58895/ksp/1000174496-7.
Senke, Hanna u. a.: Deep learning-based localisation of combine harvester components in thermal images, o. O. 2024.
Senke H, Sprute D, Büker U, Flatt H. Deep learning-based localisation of combine harvester components in thermal images. Forum Bildverarbeitung 2024 = Image Pocessing Forum 2024. KIT Scientific Publishing; 2024.