Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses
E. Bolmanis, S. Uhlendorff, M. Pein-Hackelbusch, V. Galvanauskas, O. Grigs, Frontiers in Bioengineering and Biotechnology 13 (2025).
Download

Zeitschriftenaufsatz (wiss.)
| Veröffentlicht
| Englisch
Autor*in
Bolmanis, Emils;
Uhlendorff, SelinaELSA;
Pein-Hackelbusch, MiriamELSA
;
Galvanauskas, Vytautas;
Grigs, Oskars

Einrichtung
Abstract
Introduction: In-line sensors, which are crucial for real-time (bio-) process monitoring, can suffer from anomalies. These signal spikes and shifts compromise process control. Due to the dynamic and non-stationary nature of bioprocess signals, addressing these issues requires specialized preprocessing. However, existing anomaly detection methods often fail for real-time applications.
Methods: This study addresses a common yet critical issue: developing a robust and easy-to-implement algorithm for real-time anomaly detection and removal for in-line permittivity sensor measurement. Recombinant Pichia pastoris cultivations served as a case study. Trivial approaches, such as moving average filtering, do not adequately capture the complexity of the problem. However, our method provides a structured solution through three consecutive steps: 1) Signal preprocessing to reduce noise and eliminate context dependency; 2) Anomaly detection using threshold-based identification; 3) Validation and removal of identified anomalies.
Results and discussion: We demonstrate that our approach effectively detects and removes anomalies by compensating signal shift value, while remaining computationally efficient and practical for real-time use. It achieves an F1-score of 0.79 with a static threshold of 1.06 pF/cm and a double rolling aggregate transformer using window sizes w1 = 1 and w2 = 15. This flexible and scalable algorithm has the potential to bridge a crucial gap in process real-time analytics and control.
Stichworte
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Bioengineering and Biotechnology
Band
13
Artikelnummer
1609369
eISSN
ELSA-ID
Zitieren
Bolmanis E, Uhlendorff S, Pein-Hackelbusch M, Galvanauskas V, Grigs O. Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses. Frontiers in Bioengineering and Biotechnology. 2025;13. doi:10.3389/fbioe.2025.1609369
Bolmanis, E., Uhlendorff, S., Pein-Hackelbusch, M., Galvanauskas, V., & Grigs, O. (2025). Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses. Frontiers in Bioengineering and Biotechnology, 13, Article 1609369. https://doi.org/10.3389/fbioe.2025.1609369
Bolmanis E et al. (2025) Anomaly Detection and Removal Strategies for In-Line Permittivity Sensor Signal Used in Bioprocesses. Frontiers in Bioengineering and Biotechnology 13.
Bolmanis, Emils, Selina Uhlendorff, Miriam Pein-Hackelbusch, Vytautas Galvanauskas, and Oskars Grigs. “Anomaly Detection and Removal Strategies for In-Line Permittivity Sensor Signal Used in Bioprocesses.” Frontiers in Bioengineering and Biotechnology 13 (2025). https://doi.org/10.3389/fbioe.2025.1609369.
Bolmanis, Emils, Selina Uhlendorff, Miriam Pein-Hackelbusch, Vytautas Galvanauskas und Oskars Grigs. 2025. Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses. Frontiers in Bioengineering and Biotechnology 13. doi:10.3389/fbioe.2025.1609369, .
Bolmanis, Emils ; Uhlendorff, Selina ; Pein-Hackelbusch, Miriam ; Galvanauskas, Vytautas ; Grigs, Oskars: Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses. In: Frontiers in Bioengineering and Biotechnology Bd. 13. Lausanne, Frontiers Media SA (2025)
E. Bolmanis, S. Uhlendorff, M. Pein-Hackelbusch, V. Galvanauskas, O. Grigs, Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses, Frontiers in Bioengineering and Biotechnology. 13 (2025).
E. Bolmanis, S. Uhlendorff, M. Pein-Hackelbusch, V. Galvanauskas, and O. Grigs, “Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses,” Frontiers in Bioengineering and Biotechnology, vol. 13, Art. no. 1609369, 2025, doi: 10.3389/fbioe.2025.1609369.
Bolmanis, Emils, et al. “Anomaly Detection and Removal Strategies for In-Line Permittivity Sensor Signal Used in Bioprocesses.” Frontiers in Bioengineering and Biotechnology, vol. 13, 1609369, 2025, https://doi.org/10.3389/fbioe.2025.1609369.
Bolmanis, Emils u. a.: Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses, in: Frontiers in Bioengineering and Biotechnology 13 (2025).
Bolmanis E, Uhlendorff S, Pein-Hackelbusch M, Galvanauskas V, Grigs O. Anomaly detection and removal strategies for in-line permittivity sensor signal used in bioprocesses. Frontiers in Bioengineering and Biotechnology. 2025;13.
Volltext(e)
Name
fbioe-1-1609369.pdf
2.94 MB
Access Level

Zuletzt Hochgeladen
2025-07-31T11:35:18Z